PyTorch implementation of a collections of scalable Video Transformer Benchmarks.

Overview

PyTorch implementation of Video Transformer Benchmarks

This repository is mainly built upon Pytorch and Pytorch-Lightning. We wish to maintain a collections of scalable video transformer benchmarks, and discuss the training recipes of how to train a big video transformer model.

Now, we implement the TimeSformer and ViViT. And we have pre-trained the TimeSformer-B on Kinetics600, but still can't guarantee the performance reported in the paper. However, we find some relevant hyper-parameters which may help us to reach the target performance.

Table of Contents

  1. Difference
  2. TODO
  3. Setup
  4. Usage
  5. Result
  6. Acknowledge
  7. Contribution

Difference

In order to share the basic divided spatial-temporal attention module to different video transformer, we make some changes in the following apart.

1. Position embedding

We split the position embedding from R(nt*h*w×d) mentioned in the ViViT paper into R(nh*w×d) and R(nt×d) to stay the same as TimeSformer.

2. Class token

In order to make clear whether to add the class_token into the module forward computation, we only compute the interaction between class_token and query when the current layer is the last layer (except FFN) of each transformer block.

3. Initialize from the pre-trained model

  • Tokenization: the token embedding filter can be chosen either Conv2D or Conv3D, and the initializing weights of Conv3D filters from Conv2D can be replicated along temporal dimension and averaging them or initialized with zeros along the temporal positions except at the center t/2.
  • Temporal MSA module weights: one can choose to copy the weights from spatial MSA module or initialize all weights with zeros.
  • Initialize from the MAE pre-trained model provided by ZhiLiang, where the class_token that does not appear in the MAE pre-train model is initialized from truncated normal distribution.
  • Initialize from the ViT pre-trained model can be found here.

TODO

  • add more TimeSformer and ViViT variants pre-trained weights.
    • A larger version and other operation types.
  • add linear prob and partial fine-tune.
    • Make available to transfer the pre-trained model to downstream task.
  • add more scalable Video Transformer benchmarks.
    • We will also extend to multi-modality version, e.g Perceiver is coming soon.
  • add more diverse objective functions.
    • Pre-train on larger dataset through the dominated self-supervised methods, e.g Contrastive Learning and MAE.

Setup

pip install -r requirements.txt

Usage

Training

# path to Kinetics600 train set
TRAIN_DATA_PATH='/path/to/Kinetics600/train_list.txt'
# path to root directory
ROOT_DIR='/path/to/work_space'

python model_pretrain.py \
	-lr 0.005 \
	-pretrain 'vit' \
	-epoch 15 \
	-batch_size 8 \
	-num_class 600 \
	-frame_interval 32 \
	-root_dir ROOT_DIR \
	-train_data_path TRAIN_DATA_PATH

The minimal folder structure will look like as belows.

root_dir
├── pretrain_model
│   ├── pretrain_mae_vit_base_mask_0.75_400e.pth
│   ├── vit_base_patch16_224.pth
├── results
│   ├── experiment_tag
│   │   ├── ckpt
│   │   ├── log

Inference

# path to Kinetics600 pre-trained model
PRETRAIN_PATH='/path/to/pre-trained model'
# path to the test video sample
VIDEO_PATH='/path/to/video sample'

python model_inference.py \
	-pretrain PRETRAIN_PATH \
	-video_path VIDEO_PATH \
	-num_frames 8 \
	-frame_interval 32 \

Result

Kinetics-600

1. Model Zoo

name pretrain epochs num frames spatial crop top1_acc top5_acc weight log
TimeSformer-B ImageNet-21K 15e 8 224 78.4 93.6 Google drive or BaiduYun(code: yr4j) log

2. Train Recipe(ablation study)

2.1 Acc

operation top1_acc top5_acc top1_acc (three crop)
base 68.2 87.6 -
+ frame_interval 4 -> 16 (span more time) 72.9(+4.7) 91.0(+3.4) -
+ RandomCrop, flip (overcome overfit) 75.7(+2.8) 92.5(+1.5) -
+ batch size 16 -> 8 (more iterations) 75.8(+0.1) 92.4(-0.1) -
+ frame_interval 16 -> 24 (span more time) 77.7(+1.9) 93.3(+0.9) 78.4
+ frame_interval 24 -> 32 (span more time) 78.4(+0.7) 94.0(+0.7) 79.1

tips: frame_interval and data augment counts for the validation accuracy.


2.2 Time

operation epoch_time
base (start with DDP) 9h+
+ speed up training recipes 1h+
+ switch from get_batch first to sample_Indice first 0.5h
+ batch size 16 -> 8 33.32m
+ num_workers 8 -> 4 35.52m
+ frame_interval 16 -> 24 44.35m

tips: Improve the frame_interval will drop a lot on time performance.

1.speed up training recipes:

  • More GPU device.
  • pin_memory=True.
  • Avoid CPU->GPU Device transfer (such as .item(), .numpy(), .cpu() operations on tensor or log to disk).

2.get_batch first means that we firstly read all frames through the video reader, and then get the target slice of frames, so it largely slow down the data-loading speed.


Acknowledge

this repo is built on top of Pytorch-Lightning, decord and kornia. I also learn many code designs from MMaction2. I thank the authors for releasing their code.

Contribution

I look forward to seeing one can provide some ideas about the repo, please feel free to report it in the issue, or even better, submit a pull request.

And your star is my motivation, thank u~

Owner
Xin Ma
Xin Ma
MediaPipeで姿勢推定を行い、Tokyo2020オリンピック風のピクトグラムを表示するデモ

Tokyo2020-Pictogram-using-MediaPipe MediaPipeで姿勢推定を行い、Tokyo2020オリンピック風のピクトグラムを表示するデモです。 Tokyo2020Pictgram02.mp4 Requirement mediapipe 0.8.6 or later O

KazuhitoTakahashi 295 Dec 26, 2022
OMLT: Optimization and Machine Learning Toolkit

OMLT is a Python package for representing machine learning models (neural networks and gradient-boosted trees) within the Pyomo optimization environment.

C⚙G - Imperial College London 179 Jan 02, 2023
TransGAN: Two Transformers Can Make One Strong GAN

[Preprint] "TransGAN: Two Transformers Can Make One Strong GAN", Yifan Jiang, Shiyu Chang, Zhangyang Wang

VITA 1.5k Jan 07, 2023
LIVECell - A large-scale dataset for label-free live cell segmentation

LIVECell dataset This document contains instructions of how to access the data associated with the submitted manuscript "LIVECell - A large-scale data

Sartorius Corporate Research 112 Jan 07, 2023
Transformer - Transformer in PyTorch

Transformer 完成进度 Embeddings and PositionalEncoding with example. MultiHeadAttent

Tianyang Li 1 Jan 06, 2022
[Link]mareteutral - pars tradg wth M []

pairs-trading-with-ML Jonathan Larkin, August 2017 One popular strategy classification is Pairs Trading. Though this category of strategies can exhibi

Jonathan Larkin 134 Jan 06, 2023
Music library streaming app written in Flask & VueJS

djtaytay This is a little toy app made to explore Vue, brush up on my Python, and make a remote music collection accessable through a web interface. I

Ryan Tasson 6 May 27, 2022
Nicholas Lee 3 Jan 09, 2022
Multimodal Temporal Context Network (MTCN)

Multimodal Temporal Context Network (MTCN) This repository implements the model proposed in the paper: Evangelos Kazakos, Jaesung Huh, Arsha Nagrani,

Evangelos Kazakos 13 Nov 24, 2022
2 Jul 19, 2022
A variational Bayesian method for similarity learning in non-rigid image registration (CVPR 2022)

A variational Bayesian method for similarity learning in non-rigid image registration We provide the source code and the trained models used in the re

daniel grzech 14 Nov 21, 2022
Simple object detection app with streamlit

object-detection-app Simple object detection app with streamlit. Upload an image and perform object detection. Adjust the confidence threshold to see

Robin Cole 68 Jan 02, 2023
Implementation of ConvMixer in TensorFlow and Keras

ConvMixer ConvMixer, an extremely simple model that is similar in spirit to the ViT and the even-more-basic MLP-Mixer in that it operates directly on

Sayan Nath 8 Oct 03, 2022
Brain tumor detection using CNN (InceptionResNetV2 Model)

Brain-Tumor-Detection Building a detection model using a convolutional neural network in Tensorflow & Keras. Used brain MRI images. InceptionResNetV2

1 Feb 13, 2022
Resources related to our paper "CLIN-X: pre-trained language models and a study on cross-task transfer for concept extraction in the clinical domain"

CLIN-X (CLIN-X-ES) & (CLIN-X-EN) This repository holds the companion code for the system reported in the paper: "CLIN-X: pre-trained language models a

Bosch Research 4 Dec 05, 2022
The dataset and source code for our paper: "Did You Ask a Good Question? A Cross-Domain Question IntentionClassification Benchmark for Text-to-SQL"

TriageSQL The dataset and source code for our paper: "Did You Ask a Good Question? A Cross-Domain Question Intention Classification Benchmark for Text

Yusen Zhang 22 Nov 09, 2022
Combining Diverse Feature Priors

Combining Diverse Feature Priors This repository contains code for reproducing the results of our paper. Paper: https://arxiv.org/abs/2110.08220 Blog

Madry Lab 5 Nov 12, 2022
Siamese TabNet

Raifhack-DS-2021 https://raifhack.ru/ - Команда Звёздочка Siamese TabNet Сиамская TabNet предсказывает стоимость объекта недвижимости с price_type=1,

Daniel Gafni 15 Apr 16, 2022
ReConsider is a re-ranking model that re-ranks the top-K (passage, answer-span) predictions of an Open-Domain QA Model like DPR (Karpukhin et al., 2020).

ReConsider ReConsider is a re-ranking model that re-ranks the top-K (passage, answer-span) predictions of an Open-Domain QA Model like DPR (Karpukhin

Facebook Research 47 Jul 26, 2022
TensorFlow Implementation of Unsupervised Cross-Domain Image Generation

Domain Transfer Network (DTN) TensorFlow implementation of Unsupervised Cross-Domain Image Generation. Requirements Python 2.7 TensorFlow 0.12 Pickle

Yunjey Choi 865 Nov 17, 2022