3DIAS: 3D Shape Reconstruction with Implicit Algebraic Surfaces (ICCV 2021)

Overview

3DIAS_Pytorch

This repository contains the official code to reproduce the results from the paper:

3DIAS: 3D Shape Reconstruction with Implicit Algebraic Surfaces (ICCV 2021)

[project page] [arXiv]

Installation

Clone this repository into any place you want.

git clone https://github.com/myavartanoo/3DIAS_PyTorch.git
cd 3DIAS_Pytorch

Dependencies

  • Python 3.8.5
  • PyTorch 1.7.1
  • numpy
  • Pillow
  • open3d
  • PyMCubes (or build this repo)

Install dependencies in a conda environment.

conda create -n 3dias python=3.8
conda activate 3dias

pip install -r requirements.txt

Pretrained model

Download config.json and checkpoint-epoch#.pth from below links and save in weigths folder. Note that we get Multi-class weight by training with all-classes and Single-class weight by training with each class

Multi-class

Dropbox or Mirror

Single-class

To download all the single-class weigths, run

sh download_weights.sh

Or you can get the weights one-by-one.

airplane / bench / cabinet / car / chair / display / lamp / speaker / rifle / sofa / table / phone / vessel

Quickstart (Demo)

You can now test our demo code on the provided input images in the input folder. (Or you can use other images in shapeNet.) To this end, simply run,

.png" --config "./weights/config.json" --resume "./weights/checkpoint-epoch890.pth" ">
CUDA_VISIBLE_DEVICES=0 python demo.py --inputimg "./input/
    
     .png" --config "./weights/config.json" --resume "./weights/checkpoint-epoch890.pth" 

    

The result meshes are saved in output folder. (We've created a few example meshes)

  • total.ply is a whole mesh
  • parts_.ply are meshes for parts To see the mesh, you can use meshlab

If you want to visualize meshes with open3d, run with --visualize option as below.

.png" --config "./weights/config.json" --resume "./weights/checkpoint-epoch890.pth" --visualize ">
CUDA_VISIBLE_DEVICES=0 python demo.py --inputimg "./input/
    
     .png" --config "./weights/config.json" --resume "./weights/checkpoint-epoch890.pth" --visualize

    

The preprocessed dataset, training, testing code will be distributed soon.

Citation

If you find our code or paper useful, please consider citing

@inproceedings{3DIAS,
    title = {3DIAS: 3D Shape Reconstruction with Implicit Algebraic Surfaces},
    author = {Mohsen Yavartanoo, JaeYoung Chung, Reyhaneh Neshatavar, Kyoung Mu Lee},
    booktitle = {Proceedings IEEE Conf. on International Conference on Computer Vision (ICCV)},
    year = {2021}
}
Owner
Mohsen Yavartanoo
I am a master student at Seoul National University. My research interest is, Computer Vision, Deep Learning, 3D Objection Recognition, 3D Object Detection.
Mohsen Yavartanoo
Methods to get the probability of a changepoint in a time series.

Bayesian Changepoint Detection Methods to get the probability of a changepoint in a time series. Both online and offline methods are available. Read t

Johannes Kulick 554 Dec 30, 2022
Pytorch Implementation of PointNet and PointNet++++

Pytorch Implementation of PointNet and PointNet++ This repo is implementation for PointNet and PointNet++ in pytorch. Update 2021/03/27: (1) Release p

Luigi Ariano 1 Nov 11, 2021
Align and Prompt: Video-and-Language Pre-training with Entity Prompts

ALPRO Align and Prompt: Video-and-Language Pre-training with Entity Prompts [Paper] Dongxu Li, Junnan Li, Hongdong Li, Juan Carlos Niebles, Steven C.H

Salesforce 127 Dec 21, 2022
PyTorch implementation of our ICCV2021 paper: StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimation

StructDepth PyTorch implementation of our ICCV2021 paper: StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimat

SJTU-ViSYS 112 Nov 28, 2022
A Fast Sequence Transducer Implementation with PyTorch Bindings

transducer A Fast Sequence Transducer Implementation with PyTorch Bindings. The corresponding publication is Sequence Transduction with Recurrent Neur

Awni Hannun 184 Dec 18, 2022
LAMDA: Label Matching Deep Domain Adaptation

LAMDA: Label Matching Deep Domain Adaptation This is the implementation of the paper LAMDA: Label Matching Deep Domain Adaptation which has been accep

Tuan Nguyen 9 Sep 06, 2022
Self-supervised Augmentation Consistency for Adapting Semantic Segmentation (CVPR 2021)

Self-supervised Augmentation Consistency for Adapting Semantic Segmentation This repository contains the official implementation of our paper: Self-su

Visual Inference Lab @TU Darmstadt 132 Dec 21, 2022
Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes

Neural Scene Flow Fields PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 2021 [Projec

Zhengqi Li 583 Dec 30, 2022
Dataset and Code for the paper "DepthTrack: Unveiling the Power of RGBD Tracking" (ICCV2021), and "Depth-only Object Tracking" (BMVC2021)

DeT and DOT Code and datasets for "DepthTrack: Unveiling the Power of RGBD Tracking" (ICCV2021) "Depth-only Object Tracking" (BMVC2021) @InProceedings

Yan Song 55 Dec 15, 2022
Python script that allows you to automatically setup your Growtopia server.

AutoSetup Python script that allows you to automatically setup your Growtopia server. How To Use Firstly, install all the required modules that used i

Aspire 3 Mar 06, 2022
A scikit-learn compatible neural network library that wraps PyTorch

A scikit-learn compatible neural network library that wraps PyTorch. Resources Documentation Source Code Examples To see more elaborate examples, look

4.9k Jan 03, 2023
A Self-Supervised Contrastive Learning Framework for Aspect Detection

AspDecSSCL A Self-Supervised Contrastive Learning Framework for Aspect Detection This repository is a pytorch implementation for the following AAAI'21

Tian Shi 30 Dec 28, 2022
Deep Anomaly Detection with Outlier Exposure (ICLR 2019)

Outlier Exposure This repository contains the essential code for the paper Deep Anomaly Detection with Outlier Exposure (ICLR 2019). Requires Python 3

Dan Hendrycks 464 Dec 27, 2022
[AAAI22] Reliable Propagation-Correction Modulation for Video Object Segmentation

Reliable Propagation-Correction Modulation for Video Object Segmentation (AAAI22) Preview version paper of this work is available at: https://arxiv.or

Xiaohao Xu 70 Dec 04, 2022
190 Jan 03, 2023
PyTorch implementation of paper A Fast Knowledge Distillation Framework for Visual Recognition.

FKD: A Fast Knowledge Distillation Framework for Visual Recognition Official PyTorch implementation of paper A Fast Knowledge Distillation Framework f

Zhiqiang Shen 129 Dec 24, 2022
A TensorFlow implementation of Neural Program Synthesis from Diverse Demonstration Videos

ViZDoom http://vizdoom.cs.put.edu.pl ViZDoom allows developing AI bots that play Doom using only the visual information (the screen buffer). It is pri

Hyeonwoo Noh 1 Aug 19, 2020
GUPNet - Geometry Uncertainty Projection Network for Monocular 3D Object Detection

GUPNet This is the official implementation of "Geometry Uncertainty Projection Network for Monocular 3D Object Detection". citation If you find our wo

Yan Lu 103 Dec 28, 2022
Pytorch implementation of One-Shot Affordance Detection

One-shot Affordance Detection PyTorch implementation of our one-shot affordance detection models. This repository contains PyTorch evaluation code, tr

46 Dec 12, 2022
[ECE NTUA] 👁 Computer Vision - Lab Projects & Theoretical Problem Sets (2020-2021)

Computer Vision - NTUA (2020-2021) This repository hosts the lab projects and theoretical problem sets of the Computer Vision course held by ECE NTUA

Dimitris Dimos 6 Jul 21, 2022