Python3 to Crystal Translation using Python AST Walker

Related tags

Text Data & NLPpy2cr
Overview

py2cr.py

A code translator using AST from Python to Crystal. This is basically a NodeVisitor with Crystal output. See AST documentation (https://docs.python.org/3/library/ast.html) for more information.

Status

Currently more than 80% of the relevant tests are passing. See more information below.

Installation

Execute the following:

pip install py2cr

or

git clone git://github.com/nanobowers/py2cr.git

Versions

  • Python 3.6 .. 3.9
  • Crystal 1.1+

Dependencies

Python

pip install pyyaml

# Probably not needed for much longer since py2 support is going to be removed.
pip install six 

# Probably not really needed since there is no crystal equivalent
pip install numpy

Crystal

currently there are no external dependencies

Methodology

In addition to walking and writing the AST tree and writing a Crystal syntax output, this tool either:

  • Monkey-patches some common Crystal stdlib Structs/Classes in order to emulate the Python equivalent functionality.
  • Calls equivalent Crystal methods to the Python equivalent
  • Calls wrapped Crystal methods that provide Python equivalent functionality

Usage

Generally, py2cr.py somefile.py > somefile.cr

There is a Crystal shim/wrapper library in src/py2cr (and linked into lib/py2cr) that is also referenced in the generated script. You may need to copy that as needed, though eventually it may be appropriate to convert it to a shard if that is more appropriate.

Example

TODO

Tests

$ ./run_tests.py

Will run all tests that are supposed to work. If any test fails, its a bug. (Currently there are a lot of failing tests!!)

$ ./run_tests.py -a

Will run all tests including those that are known to fail (currently). It should be understandable from the output.

$ ./run_tests.py basic

Will run all tests matching basic. Useful because running the entire test-suite can take a while.

$ ./run_tests.py -x or $ ./run_tests.py --no-error

Will run tests but ignore if an error is raised by the test. This is not affecting the error generated by the test files in the tests directory.

For additional information on flags, run:

./run_tests.py -h

Writing new tests

Adding tests for most new or existing functionality involves adding additional python files at tests/ .py .

The test-runner scripts will automatically run py2cr to produce a Crystal script, then run both the Python and Crystal scripts, then compare stdout/stderr and check return codes.

For special test-cases, it is possible to provide a configuration YAML file on a per test basis named tests/ / .config.yaml which overrides defaults for testing. The following keys/values are supported:

min_python_version: [int, int] # minimum major/minor version
max_python_version: [int, int] # maximum major/minor version
expected_exit_status: int      # exit status for py/cr test script
argument_list: [str, ... str]  # list of strings as extra args for argv

Typing

Some amount of typing support in Python is translated to Crystal. Completely untyped Python code in many cases will not be translatable to compilable Crystal. Rudimentary for python Optional and Union should convert appropriately to Crystal typing.

Some inference of bare list/dict types can now convert to [] of X and {} of X, however set and tuple may not work properly.

Status

This is incomplete and many of the tests brought forward from py2rb do not pass. Some of them may never pass as-is due to significant language / compilation differences (even moreso than Python vs. Ruby)

To some extent, it will always be incomplete. The goal is to cover common cases and reduce the additional work to minimum-viable-program.

Limitations

  • Many Python run-time exceptions are not translatable into Crystal as these issues manifest in Crystal as compile-time errors.
  • A significant portion of python code is untyped and may not translate properly in places where Crystal demands type information.
    • e.g. Crystal Lambda function parameters require typing and this is very uncommon in Python, though may be possible with Callable[] on the python side.
  • Python importing is significantly different than Crystal and thus may not ever map well.
  • Numpy and Unittest which are common in Python don't have equivalents in Crystal. With some significant additional work, converting tests into Spec format may be possible via https://github.com/jaredbeck/minitest_to_rspec as a guide

To-do

  • Remove python2/six dependencies to reduce clutter. Py2 has been end-of-lifed for a while now.
  • Remove numpy dependencies unless/until a suitable target for Crystal can be identified
  • Add additional Crystal shim methods to translate common python3 stdlib methods. Consider a mode that just maps to a close Crystal method rather than using a shim-method to reduce the python-ness.
  • Refactor the code-base. Most of it is in the __init__.py
  • Add additional unit-tests
  • Multi-thread the test-suite so it can run faster.

Contribute

Free to submit an issue. This is very much a work in progress, contributions or constructive feedback is welcome.

If you'd like to hack on py2cr, start by forking the repo on GitHub:

https://github.com/nanobowers/py2cr

Contributing

The best way to get your changes merged back into core is as follows:

  1. Fork it (https://github.com/nanobowers/py2cr/fork)
  2. Create a thoughtfully named topic branch to contain your change (git checkout -b my-new-feature)
  3. Hack away
  4. Add tests and make sure everything still passes by running crystal spec
  5. If you are adding new functionality, document it in the README
  6. If necessary, rebase your commits into logical chunks, without errors
  7. Commit your changes (git commit -am 'Add some feature')
  8. Push to the branch (git push origin my-new-feature)
  9. Create a new Pull Request

License

MIT, see the LICENSE file for exact details.

✨Fast Coreference Resolution in spaCy with Neural Networks

✨ NeuralCoref 4.0: Coreference Resolution in spaCy with Neural Networks. NeuralCoref is a pipeline extension for spaCy 2.1+ which annotates and resolv

Hugging Face 2.6k Jan 04, 2023
Huggingface Transformers + Adapters = ❤️

adapter-transformers A friendly fork of HuggingFace's Transformers, adding Adapters to PyTorch language models adapter-transformers is an extension of

AdapterHub 1.2k Jan 09, 2023
SentimentArcs: a large ensemble of dozens of sentiment analysis models to analyze emotion in text over time

SentimentArcs - Emotion in Text An end-to-end pipeline based on Jupyter notebooks to detect, extract, process and anlayze emotion over time in text. E

jon_chun 14 Dec 19, 2022
Awesome Treasure of Transformers Models Collection

💁 Awesome Treasure of Transformers Models for Natural Language processing contains papers, videos, blogs, official repo along with colab Notebooks. 🛫☑️

Ashish Patel 577 Jan 07, 2023
A curated list of FOSS tools to improve the Hacker News experience

Awesome-Hackernews Hacker News is a social news website focusing on computer technologies, hacking and startups. It promotes any content likely to "gr

Bryton Lacquement 141 Dec 27, 2022
LOT: A Benchmark for Evaluating Chinese Long Text Understanding and Generation

LOT: A Benchmark for Evaluating Chinese Long Text Understanding and Generation Tasks | Datasets | LongLM | Baselines | Paper Introduction LOT is a ben

46 Dec 28, 2022
AIDynamicTextReader - A simple dynamic text reader based on Artificial intelligence

AI Dynamic Text Reader: This is a simple dynamic text reader based on Artificial

Md. Rakibul Islam 1 Jan 18, 2022
Seonghwan Kim 24 Sep 11, 2022
Speech Recognition for Uyghur using Speech transformer

Speech Recognition for Uyghur using Speech transformer Training: this model using CTC loss and Cross Entropy loss for training. Download pretrained mo

Uyghur 11 Nov 17, 2022
Code to reprudece NeurIPS paper: Accelerated Sparse Neural Training: A Provable and Efficient Method to Find N:M Transposable Masks

Accelerated Sparse Neural Training: A Provable and Efficient Method to FindN:M Transposable Masks Recently, researchers proposed pruning deep neural n

itay hubara 4 Feb 23, 2022
Count the frequency of letters or words in a text file and show a graph.

Word Counter By EBUS Coding Club Count the frequency of letters or words in a text file and show a graph. Requirements Python 3.9 or higher matplotlib

EBUS Coding Club 0 Apr 09, 2022
A programming language with logic of Python, and syntax of all languages.

Pytov The idea was to take all well known syntaxes, and combine them into one programming language with many posabilities. Installation Install using

Yuval Rosen 14 Dec 07, 2022
Demo programs for the Talking Head Anime from a Single Image 2: More Expressive project.

Demo Code for "Talking Head Anime from a Single Image 2: More Expressive" This repository contains demo programs for the Talking Head Anime

Pramook Khungurn 901 Jan 06, 2023
Extracting Summary Knowledge Graphs from Long Documents

GraphSum This repo contains the data and code for the G2G model in the paper: Extracting Summary Knowledge Graphs from Long Documents. The other basel

Zeqiu (Ellen) Wu 10 Oct 21, 2022
a test times augmentation toolkit based on paddle2.0.

Patta Image Test Time Augmentation with Paddle2.0! Input | # input batch of images / / /|\ \ \ # apply

AgentMaker 110 Dec 03, 2022
[AAAI 21] Curriculum Labeling: Revisiting Pseudo-Labeling for Semi-Supervised Learning

◥ Curriculum Labeling ◣ Revisiting Pseudo-Labeling for Semi-Supervised Learning Paola Cascante-Bonilla, Fuwen Tan, Yanjun Qi, Vicente Ordonez. In the

UVA Computer Vision 113 Dec 15, 2022
Beyond Masking: Demystifying Token-Based Pre-Training for Vision Transformers

beyond masking Beyond Masking: Demystifying Token-Based Pre-Training for Vision Transformers The code is coming Figure 1: Pipeline of token-based pre-

Yunjie Tian 23 Sep 27, 2022
Tool which allow you to detect and translate text.

Text detection and recognition This repository contains tool which allow to detect region with text and translate it one by one. Description Two pretr

Damian Panek 176 Nov 28, 2022
Subtitle Workshop (subshop): tools to download and synchronize subtitles

SUBSHOP Tools to download, remove ads, and synchronize subtitles. SUBSHOP Purpose Limitations Required Web Credentials Installation, Configuration, an

Joe D 4 Feb 13, 2022
Finetune gpt-2 in google colab

gpt-2-colab finetune gpt-2 in google colab sample result (117M) from retraining on A Tale of Two Cities by Charles Di

212 Jan 02, 2023