Learning Features with Parameter-Free Layers (ICLR 2022)

Related tags

Deep LearningPfLayer
Overview

Learning Features with Parameter-Free Layers (ICLR 2022)

Dongyoon Han, YoungJoon Yoo, Beomyoung Kim, Byeongho Heo | Paper

NAVER AI Lab, NAVER CLOVA

Updates

  • 02.11.2022 Code has been uploaded
  • 02.06.2022 Initial update

Abstract

Trainable layers such as convolutional building blocks are the standard network design choices by learning parameters to capture the global context through successive spatial operations. When designing an efficient network, trainable layers such as the depthwise convolution is the source of efficiency in the number of parameters and FLOPs, but there was little improvement to the model speed in practice. This paper argues that simple built-in parameter-free operations can be a favorable alternative to the efficient trainable layers replacing spatial operations in a network architecture. We aim to break the stereotype of organizing the spatial operations of building blocks into trainable layers. Extensive experimental analyses based on layer-level studies with fully-trained models and neural architecture searches are provided to investigate whether parameter-free operations such as the max-pool are functional. The studies eventually give us a simple yet effective idea for redesigning network architectures, where the parameter-free operations are heavily used as the main building block without sacrificing the model accuracy as much. Experimental results on the ImageNet dataset demonstrate that the network architectures with parameter-free operations could enjoy the advantages of further efficiency in terms of model speed, the number of the parameters, and FLOPs.

Some Analyses in The Paper

1. Depthwise convolution is replaceble with a parameter-free operation:

2. Parameter-free operations are frequently searched in normal building blocks by NAS:

3. R50-hybrid (with the eff-bottlenecks) yields a localizable features (see the Grad-CAM visualizations):

Our Proposed Models

1. Schematic illustration of our models

  • Here, we provide example models where the parameter-free operations (i.e., eff-layer) are mainly used;

  • Parameter-free operations such as the max-pool2d and avg-pool2d can replace the spatial operations (conv and SA).

2. Brief model descriptions

resnet_pf.py: resnet50_max(), resnet50_hybrid(): R50-max, R50-hybrid - model with the efficient bottlenecks

vit_pf.py: vit_s_max() - ViT with the efficient transformers

pit_pf.py: pit_s_max() - PiT with the efficient transformers

Usage

Requirements

pytorch >= 1.6.0
torchvision >= 0.7.0
timm >= 0.3.4
apex == 0.1.0

Pretrained models

Network Img size Params. (M) FLOPs (G) GPU (ms) Top-1 (%) Top-5 (%)
R50 224x224 25.6 4.1 8.7 76.2 93.8
R50-max 224x224 14.2 2.2 6.8 74.3 92.0
R50-hybrid 224x224 17.3 2.6 7.3 77.1 93.1
Network Img size Throughputs Vanilla +CutMix +DeiT
R50 224x224 962 / 112 76.2 77.6 78.8
ViT-S-max 224x224 763 / 96 74.2 77.3 79.8
PiT-S-max 224x224 1000 / 92 75.7 78.1 80.1

Model load & evaluation

Example code of loading resnet50_hybrid without timm:

import torch
from resnet_pf import resnet50_hybrid

model = resnet50_hybrid() 
model.load_state_dict(torch.load('./weight/checkpoint.pth'))
print(model(torch.randn(1, 3, 224, 224)))

Example code of loading pit_s_max with timm:

import torch
import timm
import pit_pf
   
model = timm.create_model('pit_s_max', pretrained=False)
model.load_state_dict(torch.load('./weight/checkpoint.pth'))
print(model(torch.randn(1, 3, 224, 224)))

Directly run each model can verify a single iteration of forward and backward of the mode.

Training

Our ResNet-based models can be trained with any PyTorch training codes; we recommend timm. We provide a sample script for training R50_hybrid with the standard 90-epochs training setup:

  python3 -m torch.distributed.launch --nproc_per_node=4 train.py ./ImageNet_dataset/ --model resnet50_hybrid --opt sgd --amp \
  --lr 0.2 --weight-decay 1e-4 --batch-size 256 --sched step --epochs 90 --decay-epochs 30 --warmup-epochs 3 --smoothing 0\

Vision transformers (ViT and PiT) models are also able to be trained with timm, but we recommend the code DeiT to train with. We provide a sample training script with the default training setup in the package:

  python3 -m torch.distributed.launch --nproc_per_node=4 --use_env main.py --model vit_s_max --batch-size 256 --data-path ./ImageNet_dataset/

License

Copyright 2022-present NAVER Corp.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

How to cite

@inproceedings{han2022learning,
    title={Learning Features with Parameter-Free Layers},
    author={Dongyoon Han and YoungJoon Yoo and Beomyoung Kim and Byeongho Heo},
    year={2022},
    journal={International Conference on Learning Representations (ICLR)},
}
Owner
NAVER AI
Official account of NAVER AI, Korea No.1 Industrial AI Research Group
NAVER AI
PyTorch implementation of "ContextNet: Improving Convolutional Neural Networks for Automatic Speech Recognition with Global Context" (INTERSPEECH 2020)

ContextNet ContextNet has CNN-RNN-transducer architecture and features a fully convolutional encoder that incorporates global context information into

Sangchun Ha 24 Nov 24, 2022
Code and data for ImageCoDe, a contextual vison-and-language benchmark

ImageCoDe This repository contains code and data for ImageCoDe: Image Retrieval from Contextual Descriptions. Data All collected descriptions for the

McGill NLP 27 Dec 02, 2022
Implementation of Wasserstein adversarial attacks.

Stronger and Faster Wasserstein Adversarial Attacks Code for Stronger and Faster Wasserstein Adversarial Attacks, appeared in ICML 2020. This reposito

21 Oct 06, 2022
Framework for abstracting Amiga debuggers and access to AmigaOS libraries and devices.

Framework for abstracting Amiga debuggers. This project provides abstration to control an Amiga remotely using a debugger. The APIs are not yet stable

Roc Vallès 39 Nov 22, 2022
Convert scikit-learn models to PyTorch modules

sk2torch sk2torch converts scikit-learn models into PyTorch modules that can be tuned with backpropagation and even compiled as TorchScript. Problems

Alex Nichol 101 Dec 16, 2022
Differential Privacy for Heterogeneous Federated Learning : Utility & Privacy tradeoffs

Differential Privacy for Heterogeneous Federated Learning : Utility & Privacy tradeoffs In this work, we propose an algorithm DP-SCAFFOLD(-warm), whic

19 Nov 10, 2022
Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments (CoRL 2020)

Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments [Project website] [Paper] This project is a PyTorch

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 49 Nov 28, 2022
ChebLieNet, a spectral graph neural network turned equivariant by Riemannian geometry on Lie groups.

ChebLieNet: Invariant spectral graph NNs turned equivariant by Riemannian geometry on Lie groups Hugo Aguettaz, Erik J. Bekkers, Michaël Defferrard We

haguettaz 12 Dec 10, 2022
DUE: End-to-End Document Understanding Benchmark

This is the repository that provide tools to download data, reproduce the baseline results and evaluation. What can you achieve with this guide Based

21 Dec 29, 2022
Code for the paper "VisualBERT: A Simple and Performant Baseline for Vision and Language"

This repository contains code for the following two papers: VisualBERT: A Simple and Performant Baseline for Vision and Language (arxiv) with a short

Natural Language Processing @UCLA 463 Dec 09, 2022
NOD: Taking a Closer Look at Detection under Extreme Low-Light Conditions with Night Object Detection Dataset

NOD (Night Object Detection) Dataset NOD: Taking a Closer Look at Detection under Extreme Low-Light Conditions with Night Object Detection Dataset, BM

Igor Morawski 17 Nov 05, 2022
Geometry-Aware Learning of Maps for Camera Localization (CVPR2018)

Geometry-Aware Learning of Maps for Camera Localization This is the PyTorch implementation of our CVPR 2018 paper "Geometry-Aware Learning of Maps for

NVIDIA Research Projects 321 Nov 26, 2022
Object tracking implemented with YOLOv4, DeepSort, and TensorFlow.

Object tracking implemented with YOLOv4, DeepSort, and TensorFlow. YOLOv4 is a state of the art algorithm that uses deep convolutional neural networks to perform object detections. We can take the ou

The AI Guy 1.1k Dec 29, 2022
Dilated RNNs in pytorch

PyTorch Dilated Recurrent Neural Networks PyTorch implementation of Dilated Recurrent Neural Networks (DilatedRNN). Getting Started Installation: $ pi

Zalando Research 200 Nov 17, 2022
Yolov5 deepsort inference,使用YOLOv5+Deepsort实现车辆行人追踪和计数,代码封装成一个Detector类,更容易嵌入到自己的项目中

使用YOLOv5+Deepsort实现车辆行人追踪和计数,代码封装成一个Detector类,更容易嵌入到自己的项目中。

813 Dec 31, 2022
Includes PyTorch -> Keras model porting code for ConvNeXt family of models with fine-tuning and inference notebooks.

ConvNeXt-TF This repository provides TensorFlow / Keras implementations of different ConvNeXt [1] variants. It also provides the TensorFlow / Keras mo

Sayak Paul 87 Dec 06, 2022
Retrieval.pytorch - The code we used in [2020 DIGIX]

Retrieval.pytorch - The code we used in [2020 DIGIX]

Guo-Hua Wang 2 Feb 07, 2022
A stable algorithm for GAN training

DRAGAN (Deep Regret Analytic Generative Adversarial Networks) Link to our paper - https://arxiv.org/abs/1705.07215 Pytorch implementation (thanks!) -

195 Oct 10, 2022
A model to classify a piece of news as REAL or FAKE

Fake_news_classification A model to classify a piece of news as REAL or FAKE. This python project of detecting fake news deals with fake and real news

Gokul Stark 1 Jan 29, 2022
Technical experimentations to beat the stock market using deep learning :chart_with_upwards_trend:

DeepStock Technical experimentations to beat the stock market using deep learning. Experimentations Deep Learning Stock Prediction with Daily News Hea

Keon 449 Dec 29, 2022