Repository for the COLING 2020 paper "Explainable Automated Fact-Checking: A Survey."

Overview

Explainable Fact Checking: A Survey

arXiv Maintenance Last Commit Contribution_welcome

This repository and the accompanying webpage contain resources for the paper "Explainable Fact Checking: A Survey". In the paper, we offer a critical review of the state-of-the-art in automated fact-checking with a particular focus on interpretability.

Reference

If you find our work useful, please cite the paper as formatted below.

  @inproceedings{kotonya-toni-2020-explainable-automated,
      title = "Explainable Automated Fact-Checking: A Survey",
      author = "Kotonya, Neema  and
        Toni, Francesca",
      booktitle = "Proceedings of the 28th International Conference on Computational Linguistics",
      month = dec,
      year = "2020",
      address = "Barcelona, Spain (Online)",
      publisher = "International Committee on Computational Linguistics",
      url = "https://www.aclweb.org/anthology/2020.coling-main.474",
      pages = "5430--5443"
  }

Contents

Here is an overview of papers mentioned in this work, and more recent papers which have been added.

Introduction

Fact checking is the process of establishing the veracity of claims i.e., to distinguish between false stories (e.g., misattributions, rumours, hoaxes) and facts.

Over the past few years the use of deep learning methods for fact checking and fake news detection have become a popular. Indeed, several exciting breakthroughs have occurred in automated fact checking thanks in large part due to new datasets (e.g., FEVER) and advances in machine learning for NLP. However there are still some limitations in this research area, the one we focus on in this work in our work is explanations for automated fact checking.

The pipeline commonly employed for automated fact-checking consists of four parts (subtasks). We propose that post-hoc explanations are an important and necessary extension of this pipeline.

fact-checking-pipeline

For an overview of the data and results mentioned in our survey, please visit this webpage.

Task Formulations

Here we list papers which address varied tasks related to fact checking and fake news detection.

  • Check-worthy Claim Detection

    • Toward Automated Fact-Checking: Detecting Check-worthy Factual Claims by ClaimBuster (Hassan et al., 2017). [paper] [bib]
  • Fauxtography and Multimodal Fake News Detection

    • FauxBuster: A Content-free Fauxtography Detector Using Social Media Comments (Zhang et al., 2018). [paper] [bib] [slides]
    • Fact-Checking Meets Fauxtography: Verifying Claims About Images (Zlatkova et al., 2019). [paper] [bib]
    • Eann: Event adversarial neural networks for multi-modal fake news detection (Wang et al., 2018). [paper] [bib]
  • Identifying Previously Fact-Checked Claims

    • That is a Known Lie: Detecting Previously Fact-Checked Claims (Shaar et al., 2020). [paper] [bib]
    • Where Are the Facts? Searching for Fact-checked Information to Alleviate the Spread of Fake News (Vo and Lee, 2020). [paper] [bib]
  • Neural Fake News Detection

    • Defending against neural fake news (Zellers et al., 2019). [paper] [bib]
    • Detecting Cross-Modal Inconsistency to Defend Against Neural Fake News (Tan et al., 2020). [paper] [bib]
  • Rumour Verification and Resolution

    • SemEval-2019 Task 7: RumourEval, Determining Rumour Veracity and Support for Rumours (Gorrell et al., 2019). [paper] [bib]
    • Can Rumour Stance Alone Predict Veracity? (Dungs et al., 2018). [paper] [bib]
    • SemEval-2017 Task 8: RumourEval: Determining rumour veracity and support for rumours (Derczynski et al., 2017). [paper] [bib]
  • Stylometric Analysis of News Articles

    • A stylometric inquiry into hyperpartisan and fake news (Potthast et al., 2017) [paper] [bib] [video]
    • Truth of Varying Shades: Analyzing Language in Fake News and Political Fact-Checking (Rashkin et al., 2017). [paper] [bib]
  • Table-based Fact Verification

    • TabFact: A Large-scale Dataset for Table-based Fact Verification (Chen et al., 2020). [paper] [bib]
  • Multi-hop Fact Checking

  • Error Correction of Claims

Fact Checking Datasets

List of fact checking, rumour verification and fake news detection datasets:

Datasets of naturally occurring claims

Social media

Claims from social media platforms sources e.g., Twitter, Facebook.

  • r/Fakeddit: A New Multimodal Benchmark Dataset for Fine-grained Fake News Detection (Nakamura et al., 2020). [paper] [data] [bib]
  • SemEval-2019 Task 7: RumourEval, Determining Rumour Veracity and Support for Rumours (Gorrell et al., 2019). [paper] [data] [bib]
  • All-in-one: Multi-task Learning for Rumour Verification (Kochkina et al., 2018). [paper] [data]† [bib]
  • SemEval-2017 Task 8: RumourEval: Determining rumour veracity and support for rumours (Derczynski et al., 2017). [paper] [data] [bib]
  • Hyperpartisan Facebook Pages Are Publishing False And Misleading Information At An Alarming Rate (Silverman et al., 2017). [article] [data]
  • Detect Rumors in Microblog Posts Using Propagation Structure via Kernel Learning (Ma et al., 2017). [paper] [data] [bib]
  • Analysing How People Orient to and Spread Rumours in Social Media by Looking at Conversational Threads (Zubiaga et al., 2016). [paper] [data] [bib]
  • CREDBANK: A Large-Scale Social Media Corpus with Associated Credibility Annotations (Mitra and Gilbert, 2015). [paper] [data] [bib]

† This dataset is an extention of the PHEME rumour dataset.

Fact checking and news websites

Claims for news and fact-checking platforms e.g., Snopes, Politifact.

  • Explainable Automated Fact-Checking for Public Health Claims (Kotonya and Toni, 2020). [paper] [data] [bib]
  • STANDER: An Expert-Annotated Dataset for News Stance Detection and Evidence Retrieval (Conforti et al., 2020). [paper] [data] [bib]
  • FakeCovid-- A Multilingual Cross-domain Fact Check News Dataset for COVID-19 (Shahi and Nandini, 2020). [paper] [data] [bib]
  • MultiFC: A Real-World Multi-Domain Dataset for Evidence-Based Fact Checking of Claims (Augenstein et al., 2019). [paper] [bib] [data]
  • A Richly Annotated Corpus for Different Tasks in Automated Fact-Checking (Hanselowski et al., 2019). [paper] [code] [data] [bib]
  • Integrating Stance Detection and Fact Checking in a Unified Corpus (Baly et al., 2018). [paper] [data] [bib]
  • FakeNewsNet: A Data Repository with News Content, Social Context and Spatialtemporal Information for Studying Fake News on Social Media (Shu et al., 2018). [paper] [data]
  • “Liar, Liar Pants on Fire”: A New Benchmark Dataset for Fake News Detection (Wang, 2017). [paper] [data] [bib]
  • Truth of Varying Shades: Analyzing Language in Fake News and Political Fact-Checking (Rashkin et al., 2017). [paper] [data] [bib]
  • The Fake News Challenge (Pomerleau and Rao, 2017) [data]

Hand crafted

This covers claims which are generated manually e.g. through re-writing statements.

Wikipedia

  • TabFact: A Large-scale Dataset for Table-based Fact Verification (Chen et al., 2020). [paper] [data] [bib]
  • FEVER: a Large-scale Dataset for Fact Extraction and VERification (Thorne et al., 2018). [paper] [data] [bib]
  • Automated Fact-Checking of Claims from Wikipedia (Sathe et al., 2020). [paper] [data] [bib]
  • Generating Fact Checking Briefs (Fan et al., 2020). [paper] [bib]

Scientific journals

  • Fact or Fiction: Verifying Scientific Claims (Wadden et al., EMNLP 2020). [paper] [data] [bib]

Fact Checking Systems

A list of fact-checking and fake news detection systems.

Systems by Dataset

LIAR

  • Where is your Evidence: Improving Fact-checking by Justification Modeling (Alhindi et al., 2018). [paper] [bib] [code]
  • Generating Fact Checking Explanations (Atanasova et al., 2020). [paper] [bib]

FEVER

  • FEVER 1.0 Baseline
  • Combining Fact Extraction and Verification with Neural Semantic Matching Networks (Nie et al., 2019). [paper] [bib] [code]
  • UCL Machine Reading Group: Four Factor Framework For Fact Finding (HexaF) (Yoneda et al., 2018). [paper] [bib] [code]
  • UKP-Athene: Multi-Sentence Textual Entailment for Claim Verification (Hanselowski et al., 2018). [paper] [bib] [code]
  • Team Papelo: Transformer Networks at FEVER (Malon, 2018). [paper] [bib] [code]
  • Team DOMLIN: Exploiting Evidence Enhancement for the FEVER Shared Task (Stammbach and Neumann, 2019). [paper] [bib] [code]
  • GEAR: Graph-based Evidence Aggregating and Reasoning for Fact Verification [paper] [bib] [code]
  • Fine-grained Fact Verification with Kernel Graph Attention Network [paper] [bib] [code]

MultiFC

  • Time-Aware Evidence Ranking for Fact-Checking (Allein et al., 2020). [paper] [bib]

Systems by Method

Support Vector Machines

  • Fake News or Truth? Using Satirical Cues to Detect Potentially Misleading News. [paper] [bib]

Convolutional Neural Networks

  • “Liar, Liar Pants on Fire”: A New Benchmark Dataset for Fake News Detection (Wang, 2017). [paper] [bib]
  • FAKTA: An Automatic End-to-End Fact Checking System (Nadeeem et al., 2019). [paper] [bib]

Recurrent Neural Networks

  • CSI: A Hybrid Deep Model for Fake News Detection (Ruchansky et al., 2017). [paper]
  • DeClarE: Debunking Fake News and False Claims using Evidence-Aware Deep Learning (Popat et al., 2018). [paper] [bib]
  • Truth of Varying Shades: Analyzing Language in Fake News and Political Fact-Checking (Rashkin et al., 2017). [paper] [bib]
  • Where is your Evidence: Improving Fact-checking by Justification Modeling (Alhindi et al., 2018). [paper] [bib]

Transformers and Attention Networks

  • Two Stage Transformer Model for COVID-19 Fake News Detection and Fact Checking (Vijjali et al., 2020). [paper] [bib]

Hybrid

  • GCAN: Graph-aware Co-Attention Networks for Explainable Fake News Detection on Social Media (Lu and Li, 2020). [paper] [bib]
  • DTCA: Decision Tree-based Co-Attention Networks for Explainable Claim Verification (Wu et al., 2020). [paper] [bib]
  • XFake: Explainable Fake News Detector with Visualizations (Yang et al., 2019). [paper] [bib]

Shared Tasks

📣
indicates the shared task is ongoing!

Explainable Fact Checking

Systems

A list of works on explainability in fact-checking and fake news detection:

Saliency maps

  • dEFEND: Explainable Fake News Detection (Shu et al., 2019). [paper] [bib] [video]
  • GCAN: Graph-aware Co-Attention Networks for Explainable Fake News Detection on Social Media (Lu and Li, 2020). [paper] [bib]
  • DTCA: Decision Tree-based Co-Attention Networks for Explainable Claim Verification (Wu et al., 2020). [paper] [bib]
  • DeClarE: Debunking Fake News and False Claims using Evidence-Aware Deep Learning (Popat et al., 2018). [paper] [bib]
  • CredEye: A Credibility Lens for Analyzing and Explaining Misinformation (Popat et al., 2018). [paper] [bib] [demo]
  • XFake: Explainable Fake News Detector with Visualizations (Yang et al., 2019). [paper] [bib]
  • Credibility Assessment of Textual Claims on the Web (Popat et al., 2017). [paper] [bib]

Rule discovery and graph based methods

  • ExFaKT: A Framework for Explaining Facts over Knowledge Graphs and Text (Gad-Elrab et al., 2019). [paper] [bib]
  • Explainable Fact Checking with Probabilistic Answer Set Programming (Ahmadi et al., 2019). [paper] [bib]
  • Linked Credibility Reviews for Explainable Misinformation Detection (Denaux et al., 2020). [paper [bib]

Summarization

  • e-FEVER: Explanations and Summaries for Automated Fact Checking (Stammbach and Ash, 2020). [paper] [bib]
  • Generating Fact Checking Explanations (Atanasova et al., 2020). [paper] [bib]
  • Explainable Automated Fact Checking for Public Health Claims (Kotonya and Toni, 2020). [paper] [bib]

Adversarial Training for Automated Fact Checking

List of papers which look at adversarial training for robust fact-checking:

  • Generating Label Cohesive and Well-Formed Adversarial Claims (Atanasova et al.,2020). [paper] [bib] [code]
  • Evaluating adversarial attacks against multiple fact verification systems (Thorne et al., 2019). [paper] [bib] [video]
  • DeSePtion: Dual Sequence Prediction and Adversarial Examples for Improved Fact-Checking (Hidey et al., 2020). [paper] [bib]
  • Fake news detection via NLP is vulnerable to adversarial attacks (Zhou et al., 2019). [paper] [bib]
  • GEM: Generative enhanced model for adversarial attacks (Niewinski et al., 2019). [paper] [bib]
  • FEVER Breaker’s Run of Team NbAuzDrLqg (Kim and Allan, 2019). [paper] [bib]

Error Correction of Claims

  • Factual Error Correction of Claims (Thorne and Vlachos, 2020). [paper] [bib]

Fact Checking with Intrepretable Features

  • A Language-Based Approach to Fake News Detection Through Interpretable Features and BRNN (Qiao et al., 2020). [paper] [bib]

Multihop Reasoning for Facting Checking

Multi-hop reasoning is closely important for explainability in fact-checking, recently there have been a number of papers which look to address this task:

  • HoVer: A Dataset for Many-Hop Fact Extraction And Claim Verification (Jiang et al., 2020). [paper] [bib] [project]
  • Multi-Hop Fact Checking of Political Claims (Ostrowski et al., 2020). [paper] [bib] [code]
  • Chains-of-Reasoning at TextGraphs 2019 Shared Task: Reasoning over Chains of Facts for Explainable Multi-hop Inference (Das et al., 2019). [paper] [bib]

Surveys

Automated fact checking and fake news detection surveys:

  • A Survey of Fake News: Fundamental Theories, Detection Methods, and Opportunities (Zhou and Zafarani, 2020). [paper] [bib]
  • A Review on Fact Extraction and VERification: The FEVER case (Bekoulis et al., 2020). [paper] [bib]
  • A Survey on Fake News and Rumour Detection Techniques (Bondielli and Marcelloni, 2020). [paper] [bib]
  • A Survey on Natural Language Processing for Fake News Detection (Oshikawa et al., 2020). [paper] [bib]
  • Fake News Detection using Stance Classification: A Survey (Lillie and Middelboe, 2019). [paper] [bib]
  • Detection and Resolution of Rumours in Social Media: A Survey (Zubiaga et al., 2018). [paper] [bib]
  • Automated Fact Checking: Task Formulations, Methods and Future Directions (Thorne and Vlachos, 2018). [paper] [bib]
  • Media-Rich Fake News Detection: A Survey (Parikh and Atrey, 2018). [paper] [bib]
  • A Content Management Perspective on Fact-Checking (Cazalens et al., 2018). [paper] [bib]
  • Fake News Detection on Social Media: A Data Mining Perspective (Shu et al., 2017). [paper] [bib]

Tutorials

Contact

Please feel free to contact Neema Kotonya if you have any questions or comments.

Owner
Neema Kotonya
PhD Student at Imperial College London.
Neema Kotonya
Repositório criado para abrigar os notebooks com a listas de exercícios propostos pelo professor Gustavo Guanabara do canal Curso em Vídeo do YouTube durante o Curso de Python 3

Curso em Vídeo - Exercícios de Python 3 Sobre o repositório Este repositório contém os notebooks com a listas de exercícios propostos pelo professor G

João Pedro Pereira 9 Oct 15, 2022
Repo for paper "Dynamic Placement of Rapidly Deployable Mobile Sensor Robots Using Machine Learning and Expected Value of Information"

Repo for paper "Dynamic Placement of Rapidly Deployable Mobile Sensor Robots Using Machine Learning and Expected Value of Information" Notes I probabl

Berkeley Expert System Technologies Lab 0 Jul 01, 2021
Classifying audio using Wavelet transform and deep learning

Audio Classification using Wavelet Transform and Deep Learning A step-by-step tutorial to classify audio signals using continuous wavelet transform (C

Aditya Dutt 17 Nov 29, 2022
Codeflare - Scale complex AI/ML pipelines anywhere

Scale complex AI/ML pipelines anywhere CodeFlare is a framework to simplify the integration, scaling and acceleration of complex multi-step analytics

CodeFlare 169 Nov 29, 2022
PyTorch implementation of paper: AdaAttN: Revisit Attention Mechanism in Arbitrary Neural Style Transfer, ICCV 2021.

AdaAttN: Revisit Attention Mechanism in Arbitrary Neural Style Transfer [Paper] [PyTorch Implementation] [Paddle Implementation] Overview This reposit

148 Dec 30, 2022
Heart Arrhythmia Classification

This program takes and input of an ECG in European Data Format (EDF) and outputs the classification for heartbeats into normal vs different types of arrhythmia . It uses a deep learning model for cla

4 Nov 02, 2022
Object-aware Contrastive Learning for Debiased Scene Representation

Object-aware Contrastive Learning Official PyTorch implementation of "Object-aware Contrastive Learning for Debiased Scene Representation" by Sangwoo

43 Dec 14, 2022
Official Keras Implementation for UNet++ in IEEE Transactions on Medical Imaging and DLMIA 2018

UNet++: A Nested U-Net Architecture for Medical Image Segmentation UNet++ is a new general purpose image segmentation architecture for more accurate i

Zongwei Zhou 1.8k Jan 07, 2023
Search and filter videos based on objects that appear in them using convolutional neural networks

Thingscoop: Utility for searching and filtering videos based on their content Description Thingscoop is a command-line utility for analyzing videos se

Anastasis Germanidis 354 Dec 04, 2022
DGCNN - Dynamic Graph CNN for Learning on Point Clouds

DGCNN is the author's re-implementation of Dynamic Graph CNN, which achieves state-of-the-art performance on point-cloud-related high-level tasks including category classification, semantic segmentat

Wang, Yue 1.3k Dec 26, 2022
PyTorch code for our ECCV 2020 paper "Single Image Super-Resolution via a Holistic Attention Network"

HAN PyTorch code for our ECCV 2020 paper "Single Image Super-Resolution via a Holistic Attention Network" This repository is for HAN introduced in the

五维空间 140 Nov 23, 2022
Implementation of TransGanFormer, an all-attention GAN that combines the finding from the recent GanFormer and TransGan paper

TransGanFormer (wip) Implementation of TransGanFormer, an all-attention GAN that combines the finding from the recent GansFormer and TransGan paper. I

Phil Wang 146 Dec 06, 2022
NOMAD - A blackbox optimization software

################################################################################### #

Blackbox Optimization 78 Dec 29, 2022
YOLOv5 🚀 is a family of object detection architectures and models pretrained on the COCO dataset

YOLOv5 🚀 is a family of object detection architectures and models pretrained on the COCO dataset, and represents Ultralytics open-source research int

阿才 73 Dec 16, 2022
Continuous Time LiDAR odometry

CT-ICP: Elastic SLAM for LiDAR sensors This repository implements the SLAM CT-ICP (see our article), a lightweight, precise and versatile pure LiDAR o

385 Dec 29, 2022
LeafSnap replicated using deep neural networks to test accuracy compared to traditional computer vision methods.

Deep-Leafsnap Convolutional Neural Networks have become largely popular in image tasks such as image classification recently largely due to to Krizhev

Sujith Vishwajith 48 Nov 27, 2022
General purpose GPU compute framework for cross vendor graphics cards (AMD, Qualcomm, NVIDIA & friends)

General purpose GPU compute framework for cross vendor graphics cards (AMD, Qualcomm, NVIDIA & friends). Blazing fast, mobile-enabled, asynchronous and optimized for advanced GPU data processing usec

The Kompute Project 1k Jan 06, 2023
这是一个deeplabv3-plus-pytorch的源码,可以用于训练自己的模型。

DeepLabv3+:Encoder-Decoder with Atrous Separable Convolution语义分割模型在Pytorch当中的实现 目录 性能情况 Performance 所需环境 Environment 注意事项 Attention 文件下载 Download 训练步骤

Bubbliiiing 350 Dec 28, 2022
Ground truth data for the Optical Character Recognition of Historical Classical Commentaries.

OCR Ground Truth for Historical Commentaries The dataset OCR ground truth for historical commentaries (GT4HistComment) was created from the public dom

Ajax Multi-Commentary 3 Sep 08, 2022
An implementation on "Curved-Voxel Clustering for Accurate Segmentation of 3D LiDAR Point Clouds with Real-Time Performance"

Lidar-Segementation An implementation on "Curved-Voxel Clustering for Accurate Segmentation of 3D LiDAR Point Clouds with Real-Time Performance" from

Wangxu1996 135 Jan 06, 2023