Regularized Frank-Wolfe for Dense CRFs: Generalizing Mean Field and Beyond

Overview

CRF - Conditional Random Fields

A library for dense conditional random fields (CRFs).

This is the official accompanying code for the paper Regularized Frank-Wolfe for Dense CRFs: Generalizing Mean Field and Beyond published at NeurIPS 2021 by Đ.Khuê Lê-Huu and Karteek Alahari. Please cite this paper if you use any part of this code, using the following BibTeX entry:

@inproceedings{lehuu2021regularizedFW,
  title={Regularized Frank-Wolfe for Dense CRFs: Generalizing Mean Field and Beyond},
  author={L\^e-Huu, \DJ.Khu\^e and Alahari, Karteek},
  booktitle={Neural Information Processing Systems (NeurIPS)},
  year={2021}
}

Currently the code is messy and undocumented, and we apology for that. We will make an effort to fix this soon. To facilitate the maintenance, the code and pre-trained models for the semantic segmentation task will be available in a separate repository.

Installation

git clone https://github.com/netw0rkf10w/CRF.git
cd CRF
python setup.py install

Usage

After having installed the package, you can create a CRF layer as follows:

import CRF

params = CRF.FrankWolfeParams(scheme='fixed', # constant stepsize
            stepsize=1.0,
            regularizer='l2',
            lambda_=1.0, # regularization weight
            lambda_learnable=False,
            x0_weight=0.5, # useful for training, set to 0 if inference only
            x0_weight_learnable=False)

crf = CRF.DenseGaussianCRF(classes=21,
                alpha=160,
                beta=0.05,
                gamma=3.0,
                spatial_weight=1.0,
                bilateral_weight=1.0,
                compatibility=1.0,
                init='potts',
                solver='fw',
                iterations=5,
                params=params)

Detailed documentation on the available options will be added later.

Below is an example of how to use this layer in combination with a CNN. We can define for example the following simple CNN-CRF module:

import torch

class CNNCRF(torch.nn.Module):
    """
    Simple CNN-CRF model
    """
    def __init__(self, cnn, crf):
        super().__init__()
        self.cnn = cnn
        self.crf = crf

    def forward(self, x):
        """
        x is a batch of input images
        """
        logits = self.cnn(x)
        logits = self.crf(x, logits)
        return logits

# Create a CNN-CRF model from given `cnn` and `crf`
# This is a PyTorch module that can be used in a usual way
model = CNNCRF(cnn, crf)

Acknowledgements

The CUDA implementation of the permutohedral lattice is due to https://github.com/MiguelMonteiro/permutohedral_lattice. An initial version of our permutohedral layer was based on https://github.com/Fettpet/pytorch-crfasrnn.

Owner
Đ.Khuê Lê-Huu
Đ.Khuê Lê-Huu
DC540 hacking challenge 0x00005a.

dc540-0x00005a DC540 hacking challenge 0x00005a. PROMOTIONAL VIDEO - WATCH NOW HERE ON YOUTUBE CRITICAL PART 5A VIDEO - WATCH NOW HERE ON YOUTUBE Prio

Kevin Thomas 3 May 09, 2022
The code of "Dependency Learning for Legal Judgment Prediction with a Unified Text-to-Text Transformer".

Code data_preprocess.py: preprocess data for Dependent-T5. parameters.py: define parameters of Dependent-T5. train_tools.py: traning and evaluation co

1 Apr 21, 2022
Official PyTorch implementation of N-ImageNet: Towards Robust, Fine-Grained Object Recognition with Event Cameras (ICCV 2021)

N-ImageNet: Towards Robust, Fine-Grained Object Recognition with Event Cameras Official PyTorch implementation of N-ImageNet: Towards Robust, Fine-Gra

32 Dec 26, 2022
Python suite to construct benchmark machine learning datasets from the MIMIC-III clinical database.

MIMIC-III Benchmarks Python suite to construct benchmark machine learning datasets from the MIMIC-III clinical database. Currently, the benchmark data

Chengxi Zang 6 Jan 02, 2023
A embed able annotation tool for end to end cross document co-reference

CoRefi CoRefi is an emebedable web component and stand alone suite for exaughstive Within Document and Cross Document Coreference Anntoation. For a de

PythicCoder 39 Dec 12, 2022
COVINS -- A Framework for Collaborative Visual-Inertial SLAM and Multi-Agent 3D Mapping

COVINS -- A Framework for Collaborative Visual-Inertial SLAM and Multi-Agent 3D Mapping Version 1.0 COVINS is an accurate, scalable, and versatile vis

ETHZ V4RL 183 Dec 27, 2022
[ICCV21] Self-Calibrating Neural Radiance Fields

Self-Calibrating Neural Radiance Fields, ICCV, 2021 Project Page | Paper | Video Author Information Yoonwoo Jeong [Google Scholar] Seokjun Ahn [Google

381 Dec 30, 2022
Unified learning approach for egocentric hand gesture recognition and fingertip detection

Unified Gesture Recognition and Fingertip Detection A unified convolutional neural network (CNN) algorithm for both hand gesture recognition and finge

Mohammad 227 Dec 25, 2022
Source code of the paper "Deep Learning of Latent Variable Models for Industrial Process Monitoring".

Source code of the paper "Deep Learning of Latent Variable Models for Industrial Process Monitoring".

Xiangyin Kong 7 Nov 08, 2022
Official implementation of particle-based models (GNS and DPI-Net) on the Physion dataset.

Physion: Evaluating Physical Prediction from Vision in Humans and Machines [paper] Daniel M. Bear, Elias Wang, Damian Mrowca, Felix J. Binder, Hsiao-Y

Hsiao-Yu Fish Tung 18 Dec 19, 2022
Evaluating Cross-lingual Sentence Representations

XNLI: The Cross-Lingual NLI Corpus XNLI is an evaluation corpus for language transfer and cross-lingual sentence classification in 15 languages. New:

Meta Research 395 Dec 19, 2022
Code to reproduce experiments in the paper "Explainability Requires Interactivity".

Explainability Requires Interactivity This repository contains the code to train all custom models used in the paper Explainability Requires Interacti

Digital Health & Machine Learning 5 Apr 07, 2022
Discovering Interpretable GAN Controls [NeurIPS 2020]

GANSpace: Discovering Interpretable GAN Controls Figure 1: Sequences of image edits performed using control discovered with our method, applied to thr

Erik Härkönen 1.7k Jan 03, 2023
A selection of State Of The Art research papers (and code) on human locomotion (pose + trajectory) prediction (forecasting)

A selection of State Of The Art research papers (and code) on human trajectory prediction (forecasting). Papers marked with [W] are workshop papers.

Karttikeya Manglam 40 Nov 18, 2022
JFB: Jacobian-Free Backpropagation for Implicit Models

JFB: Jacobian-Free Backpropagation for Implicit Models

Typal Research 28 Dec 11, 2022
A Python module for parallel optimization of expensive black-box functions

blackbox: A Python module for parallel optimization of expensive black-box functions What is this? A minimalistic and easy-to-use Python module that e

Paul Knysh 426 Dec 08, 2022
Neural implicit reconstruction experiments for the Vector Neuron paper

Neural Implicit Reconstruction with Vector Neurons This repository contains code for the neural implicit reconstruction experiments in the paper Vecto

Congyue Deng 35 Jan 02, 2023
AdamW optimizer for bfloat16 models in pytorch.

Image source AdamW optimizer for bfloat16 models in pytorch. Bfloat16 is currently an optimal tradeoff between range and relative error for deep netwo

Alex Rogozhnikov 8 Nov 20, 2022
本步态识别系统主要基于GaitSet模型进行实现

本步态识别系统主要基于GaitSet模型进行实现。在尝试部署本系统之前,建立理解GaitSet模型的网络结构、训练和推理方法。 系统的实现效果如视频所示: 演示视频 由于模型较大,部分模型文件存储在百度云盘。 链接提取码:33mb 具体部署过程 1.下载代码 2.安装requirements.txt

16 Oct 22, 2022
Data-Uncertainty Guided Multi-Phase Learning for Semi-supervised Object Detection

An official implementation of paper Data-Uncertainty Guided Multi-Phase Learning for Semi-supervised Object Detection

11 Nov 23, 2022