LEAP: Learning Articulated Occupancy of People

Related tags

Deep Learningleap
Overview

LEAP: Learning Articulated Occupancy of People

Paper | Video | Project Page

teaser figure

This is the official implementation of the CVPR 2021 submission LEAP: Learning Articulated Occupancy of People

LEAP is a neural network architecture for representing volumetric animatable human bodies. It follows traditional human body modeling techniques and leverages a statistical human prior to generalize to unseen humans.

If you find our code or paper useful, please consider citing:

@InProceedings{LEAP:CVPR:21,
  title = {{LEAP}: Learning Articulated Occupancy of People},
  author = {Mihajlovic, Marko and Zhang, Yan and Black, Michael J and Tang, Siyu},
  booktitle = {IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
  month = {June},
  year = {2021},
}

Contact Marko Mihajlovic for questions or open an issue / a pull request.

Prerequests

1) SMPL body model

Download a SMPL body model (SMPL, SMPL+H, SMPL+X, MANO) and store it under ${BODY_MODELS} directory of the following structure:

${BODY_MODELS}
├── smpl
│   └── x
├── smplh
│   ├── male
|   │   └── model.npz
│   ├── female
|   │   └── model.npz
│   └── neutral
|       └── model.npz
├── mano
|   └── x
└── smplx
    └── x

NOTE: currently only SMPL+H model is supported. Other models will be available soon.

2) Installation

Another prerequest is to install python packages specified in the requirements.txt file, which can be conveniently accomplished by using an Anaconda environment:

# clone the repo
git clone https://github.com/neuralbodies/leap.git
cd ./leap

# create environment
conda env create -f environment.yml
conda activate leap

and install the leap package via pip:

# note: install the build-essentials package if not already installed (`sudo apt install build-essential`) 
python setup.py build_ext --inplace
pip install -e .

3) (Optional) Download LEAP pretrained models

Download LEAP pretrained models from here and extract them under ${LEAP_MODELS} directory.

Usage

Check demo code in examples/query_leap.py for a demonstration on how to use LEAP for differentiable occupancy checks.

Train your own model

Follow instructions specified in data_preparation/README.md on how to prepare training data. Then, replace placeholders for pre-defined path variables in configuration files (configurations/*.yml) and execute training_code/train_leap.py script to train the neural network modules.

LEAP consists of two LBS networks and one occupancy decoder.

cd training_code

To train the forward LBS network, execute the following command:

python train_leap.py ../configurations/fwd_lbs.yml

To train the inverse LBS network:

python train_leap.py ../configurations/inv_lbs.yml

Once the LBS networks are trained, execute the following command to train the occupancy network:

python train_leap.py ../configurations/leap_model.yml

See specified yml configuration files for details about network hyperparameters.

GyroSPD: Vector-valued Distance and Gyrocalculus on the Space of Symmetric Positive Definite Matrices

GyroSPD Code for the paper "Vector-valued Distance and Gyrocalculus on the Space of Symmetric Positive Definite Matrices" accepted at NeurIPS 2021. Re

Federico Lopez 12 Dec 12, 2022
[NeurIPS 2020] This project provides a strong single-stage baseline for Long-Tailed Classification, Detection, and Instance Segmentation (LVIS).

A Strong Single-Stage Baseline for Long-Tailed Problems This project provides a strong single-stage baseline for Long-Tailed Classification (under Ima

Kaihua Tang 514 Dec 23, 2022
A Tensorflow implementation of CapsNet based on Geoffrey Hinton's paper Dynamic Routing Between Capsules

CapsNet-Tensorflow A Tensorflow implementation of CapsNet based on Geoffrey Hinton's paper Dynamic Routing Between Capsules Notes: The current version

Huadong Liao 3.8k Dec 29, 2022
the official code for ICRA 2021 Paper: "Multimodal Scale Consistency and Awareness for Monocular Self-Supervised Depth Estimation"

G2S This is the official code for ICRA 2021 Paper: Multimodal Scale Consistency and Awareness for Monocular Self-Supervised Depth Estimation by Hemang

NeurAI 4 Jul 27, 2022
An implementation of based on pytorch and mmcv

FisherPruning-Pytorch An implementation of Group Fisher Pruning for Practical Network Compression based on pytorch and mmcv Main Functions Pruning f

Peng Lu 15 Dec 17, 2022
An inofficial PyTorch implementation of PREDATOR based on KPConv.

PREDATOR: Registration of 3D Point Clouds with Low Overlap An inofficial PyTorch implementation of PREDATOR based on KPConv. The code has been tested

ZhuLifa 14 Aug 03, 2022
🐸STT integration examples

🐸 STT 0.9.x Examples These are various examples on how to use or integrate 🐸 STT using our packages. It is a good way to just try out 🐸 STT before

coqui 92 Dec 19, 2022
Adversarial Graph Representation Adaptation for Cross-Domain Facial Expression Recognition (AGRA, ACM 2020, Oral)

Cross Domain Facial Expression Recognition Benchmark Implementation of papers: Cross-Domain Facial Expression Recognition: A Unified Evaluation Benchm

89 Dec 09, 2022
PassAPI is a password generator in hash format and fully developed in Python, with the aim of teaching how to handle and build

simple, elegant and safe Introduction PassAPI is a password generator in hash format and fully developed in Python, with the aim of teaching how to ha

Johnsz 2 Mar 02, 2022
Codes for AAAI22 paper "Learning to Solve Travelling Salesman Problem with Hardness-Adaptive Curriculum"

Paper For more details, please see our paper Learning to Solve Travelling Salesman Problem with Hardness-Adaptive Curriculum which has been accepted a

14 Sep 30, 2022
Implementation of Wasserstein adversarial attacks.

Stronger and Faster Wasserstein Adversarial Attacks Code for Stronger and Faster Wasserstein Adversarial Attacks, appeared in ICML 2020. This reposito

21 Oct 06, 2022
This repository contains the accompanying code for Deep Virtual Markers for Articulated 3D Shapes, ICCV'21

Deep Virtual Markers This repository contains the accompanying code for Deep Virtual Markers for Articulated 3D Shapes, ICCV'21 Getting Started Get sa

KimHyomin 45 Oct 07, 2022
Official code for ICCV2021 paper "M3D-VTON: A Monocular-to-3D Virtual Try-on Network"

M3D-VTON: A Monocular-to-3D Virtual Try-On Network Official code for ICCV2021 paper "M3D-VTON: A Monocular-to-3D Virtual Try-on Network" Paper | Suppl

109 Dec 29, 2022
Bayesian dessert for Lasagne

Gelato Bayesian dessert for Lasagne Recent results in Bayesian statistics for constructing robust neural networks have proved that it is one of the be

Maxim Kochurov 84 May 11, 2020
PyTorch implementation of SmoothGrad: removing noise by adding noise.

SmoothGrad implementation in PyTorch PyTorch implementation of SmoothGrad: removing noise by adding noise. Vanilla Gradients SmoothGrad Guided backpro

SSKH 143 Jan 05, 2023
This codebase proposes modular light python and pytorch implementations of several LiDAR Odometry methods

pyLiDAR-SLAM This codebase proposes modular light python and pytorch implementations of several LiDAR Odometry methods, which can easily be evaluated

Kitware, Inc. 208 Dec 16, 2022
Official implementation of UTNet: A Hybrid Transformer Architecture for Medical Image Segmentation

UTNet (Accepted at MICCAI 2021) Official implementation of UTNet: A Hybrid Transformer Architecture for Medical Image Segmentation Introduction Transf

110 Jan 01, 2023
Semi-supervised Adversarial Learning to Generate Photorealistic Face Images of New Identities from 3D Morphable Model

Semi-supervised Adversarial Learning to Generate Photorealistic Face Images of New Identities from 3D Morphable Model Baris Gecer 1, Binod Bhattarai 1

Baris Gecer 190 Dec 29, 2022
Keras-1D-NN-Classifier

Keras-1D-NN-Classifier This code is based on the reference codes linked below. reference 1, reference 2 This code is for 1-D array data classification

Jae-Hoon Shim 6 May 18, 2021
Volumetric parameterization of the placenta to a flattened template

placenta-flattening A MATLAB algorithm for volumetric mesh parameterization. Developed for mapping a placenta segmentation derived from an MRI image t

Mazdak Abulnaga 12 Mar 14, 2022