Grow Function: Generate 3D Stacked Bifurcating Double Deep Cellular Automata based organisms which differentiate using a Genetic Algorithm...

Related tags

Deep LearningGrowF
Overview

GrowF

Banner

Grow Function: Generate 3D Stacked Bifurcating Double Deep Cellular Automata based organisms which differentiate using a Genetic Algorithm...

TLDR; High Def Living Trees that you can breed, trim and mint as NFTs on Solana, Ethereum, Cardano and other blockchain networks.

This demo represents the current state of the codebase. If anyone wishes to join this project, please contact or fork.

Written in Python using the Blender Library

Current state of development https://www.youtube.com/watch?v=BUarQzuhj1c

Installation

  • Install Blender if you don't already have it
  • Open treegen.blend

Once opened, you can generate whatever tree is currently there by default by going to the scripting tab, opening tree.py and pressing the Run button

The Metaverse Needs Trees

Let's Face it, it's hard to model trees that are realistic in any 3D modeling platform. Much less, make them lowpoly or high poly, or ready for video games or kinematics and physics. But if you think about it, it's hard to make believable trees because trees are grown, not sculpted by nature. They the results of a bunch of growth patterns that came together to form what we categorize as trees or even any type of plant. The bifurcation structure of a tree is everywhere. You needen't go as far as looking at the human nervous system, or in the structure of folders in your computer, to see that same tree organization. Imagine having a tree that you can plant on top of a structure like a stone sculpture in VR and watch it's roots eating through the walls and stone in hyper-real time. Imagine breeding trees to be a specific color or give a specific type of fruit, or growing them in zero gravity. Imagine planting a garden and watching your plants and trees grow together over time and generations.

We Have the Technology

Recent developments in the fields of Cellular Automata and Genetic Algorithms have led to the possibility of growing living organisms in higher dimensions. Many projects like Lenia, The Life Engine and even VR games like Playne, and Inward have made a big deal of living organisms in games and tech culture. These living organisms can behave like bacteria, like larger soft-bodied oganisms, or like Trees. On a scientific level, there exist virtual living ecosystems of over 500,000 plants in simulations like the ones seen in the paper "Synthetic Silviculture: Multi-Scale Modeling of Plant Ecosystems". These large or multi-scale simulations are focused on larger scale simulations, creating realistic, yet estimated details, (albeit through rigorous scientific analysis to approximate reality).

But that begs the question, how high definition can one go in creating growing 3D systems? Can cell differentiation be accquired by genetic algorithm in new and spontaneous ways which account for ecosystem? This project aims to advance toward answering those questions, starting with what we think will end up being hi-res tree models, but could end up as anything.

I think it's possible to go to infinite resolution by making a growth protocol that is forward compatible, so that the computers of the future which operate on orders of magnitude of higher parallelism can show the same tree you minted in 2022, in much higher detail.

The Blockchain? Why?

Well, trees, and other living virtual organisms can be owned. The 3D Models of their life progression can be included in games using Non-Fungible Tokens (NFTs). If you can own any unique digital item, why not own a tree that you have bred, or trimmed, or simply that you found in a VR game somewhere. Think about trimming, or when trees bear fruits that have specific properties or visual peculiarities. Each branch of the tree can be removed, the fruits or leaves, (or whatever ends up growing on a bifurcation) can be separated from the tree, recorded as removed in the tree's history (affecting it's model forever). Just like with real trees, the seeds in those fruits can be minted and given to friends or sold, reflecting the value that you have added to the tree by planting and growing it somewhere in the Metaverse. It could end up seeding virtual forests, or being used as CG set pieces in movies or video games depending on who buys it from you.

Owner
Nathaniel Gibson
Nathaniel Gibson
Baseline of DCASE 2020 task 4

Couple Learning for SED This repository provides the data and source code for sound event detection (SED) task. The improvement of the Couple Learning

21 Oct 18, 2022
Here is the implementation of our paper S2VC: A Framework for Any-to-Any Voice Conversion with Self-Supervised Pretrained Representations.

S2VC Here is the implementation of our paper S2VC: A Framework for Any-to-Any Voice Conversion with Self-Supervised Pretrained Representations. In thi

81 Dec 15, 2022
Progressive Domain Adaptation for Object Detection

Progressive Domain Adaptation for Object Detection Implementation of our paper Progressive Domain Adaptation for Object Detection, based on pytorch-fa

96 Nov 25, 2022
Probabilistic-Monocular-3D-Human-Pose-Estimation-with-Normalizing-Flows

Probabilistic-Monocular-3D-Human-Pose-Estimation-with-Normalizing-Flows This is the official implementation of the ICCV 2021 Paper "Probabilistic Mono

62 Nov 23, 2022
This is the repository for The Machine Learning Workshops, published by AI DOJO

This is the repository for The Machine Learning Workshops, published by AI DOJO. It contains all the workshop's code with supporting project files necessary to work through the code.

AI Dojo 12 May 06, 2022
Tensorflow 2 implementations of the C-SimCLR and C-BYOL self-supervised visual representation methods from "Compressive Visual Representations" (NeurIPS 2021)

Compressive Visual Representations This repository contains the source code for our paper, Compressive Visual Representations. We developed informatio

Google Research 30 Nov 23, 2022
Unified Pre-training for Self-Supervised Learning and Supervised Learning for ASR

UniSpeech The family of UniSpeech: UniSpeech (ICML 2021): Unified Pre-training for Self-Supervised Learning and Supervised Learning for ASR UniSpeech-

Microsoft 282 Jan 09, 2023
Implementation of ICCV 2021 oral paper -- A Novel Self-Supervised Learning for Gaussian Mixture Model

SS-GMM Implementation of ICCV 2021 oral paper -- Self-Supervised Image Prior Learning with GMM from a Single Noisy Image with supplementary material R

HUST-The Tan Lab 4 Dec 05, 2022
BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation and Alignment

BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation and Alignment

Holy Wu 35 Jan 01, 2023
Inferring Lexicographically-Ordered Rewards from Preferences

Inferring Lexicographically-Ordered Rewards from Preferences Code author: Alihan Hüyük ([e

Alihan Hüyük 1 Feb 13, 2022
Fashion Recommender System With Python

Fashion-Recommender-System Thr growing e-commerce industry presents us with a la

Omkar Gawade 2 Feb 02, 2022
Bald-to-Hairy Translation Using CycleGAN

GANiry: Bald-to-Hairy Translation Using CycleGAN Official PyTorch implementation of GANiry. GANiry: Bald-to-Hairy Translation Using CycleGAN, Fidan Sa

Fidan Samet 10 Oct 27, 2022
Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020)

Karate Club is an unsupervised machine learning extension library for NetworkX. Please look at the Documentation, relevant Paper, Promo Video, and Ext

Benedek Rozemberczki 1.8k Jan 07, 2023
Pytorch implementation of the AAAI 2022 paper "Cross-Domain Empirical Risk Minimization for Unbiased Long-tailed Classification"

[AAAI22] Cross-Domain Empirical Risk Minimization for Unbiased Long-tailed Classification We point out the overlooked unbiasedness in long-tailed clas

PatatiPatata 28 Oct 18, 2022
SEAN: Image Synthesis with Semantic Region-Adaptive Normalization (CVPR 2020, Oral)

SEAN: Image Synthesis with Semantic Region-Adaptive Normalization (CVPR 2020 Oral) Figure: Face image editing controlled via style images and segmenta

Peihao Zhu 579 Dec 30, 2022
This code is for our paper "VTGAN: Semi-supervised Retinal Image Synthesis and Disease Prediction using Vision Transformers"

ICCV Workshop 2021 VTGAN This code is for our paper "VTGAN: Semi-supervised Retinal Image Synthesis and Disease Prediction using Vision Transformers"

Sharif Amit Kamran 25 Dec 08, 2022
[NeurIPS 2020] Official repository for the project "Listening to Sound of Silence for Speech Denoising"

Listening to Sounds of Silence for Speech Denoising Introduction This is the repository of the "Listening to Sounds of Silence for Speech Denoising" p

Henry Xu 40 Dec 20, 2022
Official Pytorch implementation for video neural representation (NeRV)

NeRV: Neural Representations for Videos (NeurIPS 2021) Project Page | Paper | UVG Data Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser-Nam Lim, Abhinav S

hao 214 Dec 28, 2022
Catch-all collection of generative art made using processing

Generative art with Processing.py Some art I have created for fun. Dependencies Processing for Python, see how to download/use here Packages contained

2 Mar 12, 2022
[CVPR 2020] Local Class-Specific and Global Image-Level Generative Adversarial Networks for Semantic-Guided Scene Generation

Contents Local and Global GAN Cross-View Image Translation Semantic Image Synthesis Acknowledgments Related Projects Citation Contributions Collaborat

Hao Tang 131 Dec 07, 2022