An adaptable Snakemake workflow which uses GATKs best practice recommendations to perform germline mutation calling starting with BAM files

Overview

Germline Mutation Calling

This Snakemake workflow follows the GATK best-practice recommandations to call small germline variants.

The pipeline requires as inputs aligned BAM files (e.g. with BWA) where the duplicates are already marked (e.g. with Picard or sambamba). It then performed Base Quality Score Recalibration and joint genotyping of multiple samples, which is automatically parallized over user defined intervals (for examples see intervals.txt) and chromosomes.

Filtering is performed using GATKs state-of-the-art Variant Quality Score Recalibration

At the end of the worklow, the Variant Effect Predictor is used to annotate the identified germline mutations.

A high level overview of the performed steps can be seen below:

DAG

As seen by the execution graph, an arbitrary number of samples/BAM files can be processed in parallel up to the joint variant calling.

Installation

Required tools:

The majority of the listed tools can be quite easily installed with conda which is recommanded.

Usage

First, modify the config_wgs.yaml and resources.yaml files. Both files contain detailed description what is expected. The config_wgs.yaml also contains links to some reference resources. Be careful, they are all specific for the GRCh37/hg19/b37 genome assembly.

After setting up all the config files and installing all tools, you can simply run:

snakemake --latency-wait 300 -j 5 --cluster "sbatch --mem={resources.mem_mb} --time {resources.runtime_min} --cpus-per-task {threads} --job-name={rule}.%j --output snakemake_cluster_submit_log/{rule}.%j.out --mail-type=FAIL"

This assumes that the cluster you are using is running SLURM. If this is not the case, you have to adjust the command after --cluster. The log information of each job will be safed in the snakemake_cluster_submit_log directory. This directory will not be created automatically.

-j specifies the number of jobs/rules should be submitted in parallel.

I recommand running this command in a detached session with tmux or screen.

Output

Below is the output of the tree command, after the workflow has finished for one patient H005-00ML. Usually you would include many patients simultaneously (>50). This is just to illustrate the created output files.

.
├── cohort
│ ├── benchmark
│ │ ├── ApplyVQSR_indel.txt
│ │ ├── ApplyVQSR_snp.txt
│ │ ├── CombineGVCFs.txt
│ │ ├── GenotypeGVCFs.txt
│ │ ├── MergeCohortVCFs.txt
│ │ ├── SelectVariants.txt
│ │ ├── VEP.txt
│ │ ├── VQSR_indel.txt
│ │ └── VQSR_snp.txt
│ ├── cohort.recalibrated.pass.vep.vcf.gz
│ ├── cohort.recalibrated.pass.vep.vcf.gz_summary.html
│ ├── cohort.recalibrated.vcf.gz
│ ├── cohort.recalibrated.vcf.gz.tbi
│ └── logs
│     ├── ApplyVQSR_indel.out
│     ├── ApplyVQSR_snp.out
│     ├── CombineGVCFs
│     ├── CombineGVCFs.1.out
│     ├── CombineGVCFs.2.out
│     ├── ...
│     ├── ...
│     ├── CombineGVCFs.Y.out
│     ├── GenotypeGVCFs.1.out
│     ├── GenotypeGVCFs.2.out
│     ├── ...
│     ├── ...
│     ├── GenotypeGVCFs.Y.out
│     ├── MakeSitesOnly.out
│     ├── MergeCohortVCFs.out
│     ├── SelectVariants.err
│     ├── VEP.out
│     ├── VQSR_indel.out
│     └── VQSR_snp.out
├── config
│ ├── config_wgs.yaml
│ └── resources.yaml
├── H005-00ML
│ ├── benchmark
│ │ ├── ApplyBQSR.txt
│ │ ├── BaseRecalibrator.txt
│ │ ├── GatherBQSRReports.txt
│ │ ├── GatherRecalBamFiles.txt
│ │ ├── HaplotypeCaller.txt
│ │ ├── IndexBam.txt
│ │ ├── MergeHaplotypeCaller.txt
│ │ └── SortBam.txt
│ ├── H005-00ML.germline.merged.g.vcf.gz
│ ├── H005-00ML.germline.merged.g.vcf.gz.tbi
│ └── logs
│     ├── ApplyBQSR
│     ├── ApplyBQSR.0000-scattered.interval_list.out
│     ├── ApplyBQSR.0001-scattered.interval_list.out
│     ├── ...
│     ├── ...
│     ├── ApplyBQSR.0049-scattered.interval_list.out
│     ├── BaseRecalibrator
│     ├── BaseRecalibrator.0000-scattered.interval_list.out
│     ├── BaseRecalibrator.0001-scattered.interval_list.out
│     ├── ...
│     ├── ...
│     ├── BaseRecalibrator.0049-scattered.interval_list.out
│     ├── GatherBQSRReports.out
│     ├── GatherRecalBamFiles.out
│     ├── HaplotypeCaller
│     ├── HaplotypeCaller.0000-scattered.interval_list.out
│     ├── HaplotypeCaller.0001-scattered.interval_list.out
│     ├── ...
│     ├── ...
│     ├── HaplotypeCaller.0049-scattered.interval_list.out
│     ├── IndexBam.out
│     ├── MergeHaplotypeCaller.out
│     └── SortBam.out
├── rules
│ ├── BaseQualityScoreRecalibration.smk
│ ├── JointGenotyping.smk
│ ├── VEP.smk
│ └── VQSR.smk
├── Snakefile
├── snakemake_cluster_submit_log
│ ├── ApplyBQSR.24720887.out
│ ├── ApplyVQSR_snp.24777265.out
│ ├── BaseRecalibrator.24710227.out
│ ├── CombineGVCFs.24772984.out
│ ├── GatherBQSRReports.24715726.out
│ ├── GatherRecalBamFiles.24722478.out
│ ├── GenotypeGVCFs.24773026.out
│ ├── HaplotypeCaller.24769848.out
│ ├── IndexBam.24768728.out
│ ├── MergeCohortVCFs.24776018.out
│ ├── MergeHaplotypeCaller.24772183.out
│ ├── SelectVariants.24777733.out
│ ├── SortBam.24768066.out
│ ├── VEP.24777739.out
│ ├── VQSR_indel.24776035.out
│ └── VQSR_snp.24776036.out

For each analyzed patient, a seperate directory gets created. Along with the patient specific gvcf file, this directory contains log files for all the processing steps that were performed for that patient (log directory) as well as benchmarks for each rule, e.g. how long the step took or how much CPU/RAM was used (benchmark directory).

The cohort directory contains the multi-sample VCF file, which gets created after performing the joint variant calling. The cohort.recalibrated.vcf.gz is the product of GATKs Variant Quality Score Recalibration. The cohort.recalibrated.pass.vep.vcf.gz is the filtered and VEP annotated version of cohort.recalibrated.vcf.gz (only variants with PASS are kept).

For most applications, the cohort.recalibrated.pass.vep.vcf.gz file, is the file you want to continue working with.

A GUI for Pandas DataFrames

About Demo Installation Usage Features More Info About PandasGUI is a GUI for viewing, plotting and analyzing Pandas DataFrames. Demo Installation Ins

Adam Rose 2.8k Dec 24, 2022
Geospatial Data Visualization using PyGMT

Example script to visualize topographic data, earthquake data, and tomographic data on a map

Utpal Kumar 2 Jul 30, 2022
GDSHelpers is an open-source package for automatized pattern generation for nano-structuring.

GDSHelpers GDSHelpers in an open-source package for automatized pattern generation for nano-structuring. It allows exporting the pattern in the GDSII-

Helge Gehring 76 Dec 16, 2022
Implement the Perspective open source code in preparation for data visualization

Task Overview | Installation Instructions | Link to Module 2 Introduction Experience Technology at JP Morgan Chase Try out what real work is like in t

Abdulazeez Jimoh 1 Jan 23, 2022
A curated list of awesome Dash (plotly) resources

Awesome Dash A curated list of awesome Dash (plotly) resources Dash is a productive Python framework for building web applications. Written on top of

Luke Singham 1.7k Jan 07, 2023
Create matplotlib visualizations from the command-line

MatplotCLI Create matplotlib visualizations from the command-line MatplotCLI is a simple utility to quickly create plots from the command-line, levera

Daniel Moura 46 Dec 16, 2022
This is a web application to visualize various famous technical indicators and stocks tickers from user

Visualizing Technical Indicators Using Python and Plotly. Currently facing issues hosting the application on heroku. As soon as I am able to I'll like

4 Aug 04, 2022
Bar Chart of the number of Senators from each party who are up for election in the next three General Elections

Congress-Analysis Bar Chart of the number of Senators from each party who are up for election in the next three General Elections This bar chart shows

11 Oct 26, 2021
VDLdraw - Batch plot the log files exported from VisualDL using Matplotlib

VDLdraw Batch plot the log files exported from VisualDL using Matplotlib. At pre

Yizhou Chen 5 Sep 26, 2022
Python library that makes it easy for data scientists to create charts.

Chartify Chartify is a Python library that makes it easy for data scientists to create charts. Why use Chartify? Consistent input data format: Spend l

Spotify 3.2k Jan 01, 2023
Process dataframe in a easily way.

Popanda Written by Shengxuan Wang at OSU. Used for processing dataframe, especially for machine learning. The name is from "Po" in the movie Kung Fu P

ShawnWang 1 Dec 24, 2021
Make scripted visualizations in blender

Scripted visualizations in blender The goal of this project is to script 3D scientific visualizations using blender. To achieve this, we aim to bring

Praneeth Namburi 10 Jun 01, 2022
This is a Web scraping project using BeautifulSoup and Python to scrape basic information of all the Test matches played till Jan 2022.

Scraping-test-matches-data This is a Web scraping project using BeautifulSoup and Python to scrape basic information of all the Test matches played ti

Souradeep Banerjee 4 Oct 10, 2022
Create charts with Python in a very similar way to creating charts using Chart.js

Create charts with Python in a very similar way to creating charts using Chart.js. The charts created are fully configurable, interactive and modular and are displayed directly in the output of the t

Nicolas H 68 Dec 08, 2022
Data-FX is an addon for Blender (2.9) that allows for the visualization of data with different charts

Data-FX Data-FX is an addon for Blender (2.9) that allows for the visualization of data with different charts Currently, there are only 2 chart option

Landon Ferguson 20 Nov 21, 2022
This is Pygrr PolyArt, a program used for drawing custom Polygon models for your Pygrr project!

This is Pygrr PolyArt, a program used for drawing custom Polygon models for your Pygrr project!

Isaac 4 Dec 14, 2021
This plugin plots the time you spent on a tag as a histogram.

This plugin plots the time you spent on a tag as a histogram.

Tom Dörr 7 Sep 09, 2022
🎨 Python3 binding for `@AntV/G2Plot` Plotting Library .

PyG2Plot 🎨 Python3 binding for @AntV/G2Plot which an interactive and responsive charting library. Based on the grammar of graphics, you can easily ma

hustcc 990 Jan 05, 2023