AdaDM: Enabling Normalization for Image Super-Resolution

Related tags

Deep LearningAdaDM
Overview

AdaDM

AdaDM: Enabling Normalization for Image Super-Resolution.

You can apply BN, LN or GN in SR networks with our AdaDM. Pretrained models (EDSR*/RDN*/NLSN*) can be downloaded from Google Drive or BaiduYun. The password for BaiduYun is kymj.

📢 If you use BasicSR framework, you need to turn off the Exponential Moving Average (EMA) option when applying BN in the generator network (e.g., RRDBNet). You can disable EMA by setting ema_decay=0 in corresponding .yml configuration file.

Model Scale File name (.pt) Urban100 Manga109
EDSR 2 32.93 39.10
3 28.80 34.17
4 26.64 31.02
EDSR* 2 EDSR_AdaDM_DIV2K_X2 33.12 39.31
3 EDSR_AdaDM_DIV2K_X3 29.02 34.48
4 EDSR_AdaDM_DIV2K_X4 26.83 31.24
RDN 2 32.89 39.18
3 28.80 34.13
4 26.61 31.00
RDN* 2 RDN_AdaDM_DIV2K_X2 33.03 39.18
3 RDN_AdaDM_DIV2K_X3 28.95 34.29
4 RDN_AdaDM_DIV2K_X4 26.72 31.18
NLSN 2 33.42 39.59
3 29.25 34.57
4 26.96 31.27
NLSN* 2 NLSN_AdaDM_DIV2K_X2 33.59 39.67
3 NLSN_AdaDM_DIV2K_X3 29.53 34.95
4 NLSN_AdaDM_DIV2K_X4 27.24 31.73

Preparation

Please refer to EDSR for instructions on dataset download and software installation, then clone our repository as follows:

git clone https://github.com/njulj/AdaDM.git

Training

cd AdaDM/src
bash train.sh

Example training command in train.sh looks like:

CUDA_VISIBLE_DEVICES=$GPU_ID python3 main.py --template EDSR_paper --scale 2\
        --n_GPUs 1 --batch_size 16 --patch_size 96 --rgb_range 255 --res_scale 0.1\
        --save EDSR_AdaDM_Test_DIV2K_X2 --dir_data ../dataset --data_test Urban100\
        --epochs 1000 --decay 200-400-600-800 --lr 1e-4 --save_models --save_results 

Here, $GPU_ID specifies the GPU id used for training. EDSR_AdaDM_Test_DIV2K_X2 is the directory where all files are saved during training. --dir_data specifies the root directory for all datasets, you should place the DIV2K and benchmark (e.g., Urban100) datasets under this directory.

Testing

cd AdaDM/src
bash test.sh

Example testing command in test.sh looks like:

CUDA_VISIBLE_DEVICES=$GPU_ID python3 main.py --template EDSR_paper --scale $SCALE\
        --pre_train ../experiment/test/model/EDSR_AdaDM_DIV2K_X$SCALE.pt\
        --dir_data ../dataset --n_GPUs 1 --test_only --data_test $TEST_DATASET

Here, $GPU_ID specifies the GPU id used for testing. $SCALE indicates the upscaling factor (e.g., 2, 3, 4). --pre_train specifies the path of saved checkpoints. $TEST_DATASET indicates the dataset to be tested.

Acknowledgement

This repository is built on EDSR and NLSN. We thank the authors for sharing their codes.

Code for our paper Domain Adaptive Semantic Segmentation with Self-Supervised Depth Estimation

CorDA Code for our paper Domain Adaptive Semantic Segmentation with Self-Supervised Depth Estimation Prerequisite Please create and activate the follo

Qin Wang 60 Nov 30, 2022
PyTorch code accompanying the paper "Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning" (NeurIPS 2021).

HIGL This is a PyTorch implementation for our paper: Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning (NeurIPS 2021). Our cod

Junsu Kim 20 Dec 14, 2022
Implementation of Bidirectional Recurrent Independent Mechanisms (Learning to Combine Top-Down and Bottom-Up Signals in Recurrent Neural Networks with Attention over Modules)

BRIMs Bidirectional Recurrent Independent Mechanisms Implementation of the paper Learning to Combine Top-Down and Bottom-Up Signals in Recurrent Neura

Sarthak Mittal 26 May 26, 2022
Code Repository for Liquid Time-Constant Networks (LTCs)

Liquid time-constant Networks (LTCs) [Update] A Pytorch version is added in our sister repository: https://github.com/mlech26l/keras-ncp This is the o

Ramin Hasani 553 Dec 27, 2022
Tweesent-back - Tweesent backend uses fastAPI as the web framework

TweeSent Backend Tweesent backend. This repo uses fastAPI as the web framework.

0 Mar 26, 2022
Fre-GAN: Adversarial Frequency-consistent Audio Synthesis

Fre-GAN Vocoder Fre-GAN: Adversarial Frequency-consistent Audio Synthesis Training: python train.py --config config.json Citation: @misc{kim2021frega

Rishikesh (ऋषिकेश) 93 Dec 17, 2022
3ds-Ghidra-Scripts - Ghidra scripts to help with 3ds reverse engineering

3ds Ghidra Scripts These are ghidra scripts to help with 3ds reverse engineering

Zak 7 May 23, 2022
The official implementation for ACL 2021 "Challenges in Information Seeking QA: Unanswerable Questions and Paragraph Retrieval".

Code for "Challenges in Information Seeking QA: Unanswerable Questions and Paragraph Retrieval" (ACL 2021, Long) This is the repository for baseline m

Akari Asai 25 Oct 30, 2022
SCU OlympicsRunning Baseline

Competition 1v1 running Environment check details in Jidi Competition RLChina2021智能体竞赛 做出的修改: 奖励重塑:修改了环境,重新设置了奖励的分配,使得奖励组成不只有零和博弈,还有探索环境的奖励。 算法微调:修改了官

ZiSeoi Wong 2 Nov 23, 2021
Bringing Computer Vision and Flutter together , to build an awesome app !!

Bringing Computer Vision and Flutter together , to build an awesome app !! Explore the Directories Flutter · Machine Learning Table of Contents About

Padmanabha Banerjee 14 Apr 07, 2022
Implementation of "JOKR: Joint Keypoint Representation for Unsupervised Cross-Domain Motion Retargeting"

JOKR: Joint Keypoint Representation for Unsupervised Cross-Domain Motion Retargeting Pytorch implementation for the paper "JOKR: Joint Keypoint Repres

45 Dec 25, 2022
training script for space time memory network

Trainig Script for Space Time Memory Network This codebase implemented training code for Space Time Memory Network with some cyclic features. Requirem

Yuxi Li 100 Dec 20, 2022
The author's officially unofficial PyTorch BigGAN implementation.

BigGAN-PyTorch The author's officially unofficial PyTorch BigGAN implementation. This repo contains code for 4-8 GPU training of BigGANs from Large Sc

Andy Brock 2.6k Jan 02, 2023
TianyuQi 10 Dec 11, 2022
Reimplementation of Learning Mesh-based Simulation With Graph Networks

Pytorch Implementation of Learning Mesh-based Simulation With Graph Networks This is the unofficial implementation of the approach described in the pa

Jingwei Xu 33 Dec 14, 2022
A simple baseline for 3d human pose estimation in PyTorch.

3d_pose_baseline_pytorch A PyTorch implementation of a simple baseline for 3d human pose estimation. You can check the original Tensorflow implementat

weigq 312 Jan 06, 2023
Convnet transfer - Code for paper How transferable are features in deep neural networks?

How transferable are features in deep neural networks? This repository contains source code necessary to reproduce the results presented in the follow

Jason Yosinski 143 Sep 13, 2022
A way to store images in YAML.

YAMLImg A way to store images in YAML. I made this after seeing Roadcrosser's JSON-G because it was too inspiring to ignore this opportunity. Installa

5 Mar 14, 2022
Recurrent Scale Approximation (RSA) for Object Detection

Recurrent Scale Approximation (RSA) for Object Detection Codebase for Recurrent Scale Approximation for Object Detection in CNN published at ICCV 2017

Yu Liu (Louis) 239 Dec 28, 2022
Unsupervised Feature Loss (UFLoss) for High Fidelity Deep learning (DL)-based reconstruction

Unsupervised Feature Loss (UFLoss) for High Fidelity Deep learning (DL)-based reconstruction Official github repository for the paper High Fidelity De

28 Dec 16, 2022