System Combination for Grammatical Error Correction Based on Integer Programming

Related tags

Deep Learninggec_ip
Overview

System Combination for Grammatical Error Correction Based on Integer Programming


This repository contains the code and scripts that implement the system combination approach for grammatical error correction in Lin and Ng (2021).

Reference

Ruixi Lin and Hwee Tou Ng (2021). System Combination for Grammatical Error Correction Based on Integer Programming.

Please cite:

@inproceedings{lin2021gecip,
  author    = "Lin, Ruixi and Ng, Hwee Tou",
  title     = "System Combination for Grammatical Error Correction Based on Integer Programming",
  booktitle = "Proceedings of Recent Advances in Natural Language Processing",
  year      = "2021",
  pages     = "829-834"
}

Table of contents

Prerequisites

Example

License

Prerequisites

conda create --name comb python=3.6
conda activate comb
pip install spacy
python -m spacy download en

For the nonlinear integer programming solver, we use

LINGO10.0

Note that educational institutions can obtain a free license to use the LINGO solver.

Example

Combine the 3 GEC systems listed in the paper using the IP approach. The three systems are UEdin-MS (https://aclanthology.org/W19-4427), Kakao (https://aclanthology.org/W19-4423), and Tohoku (https://aclanthology.org/D19-1119). The core functions for the IP objective are implemented in model.lg4. You can find model.lg4 under lingo/inputs.

  1. Run python prepare_data.py -dir . -list kakao uedinms tohoku to generate aggregated TP, FP, and FN counts. The counts files are stored under lingo/inputs.

  2. Load model.lg4 into the LINGO console and specify the input data path with the counts file path, select the INLP model, and run optimizations. Store the solutions to lingo/outputs/sol_kakao_uedinms_tohoku.txt.

  3. Run ./comb.sh . sol_kakao_uedinms_tohoku.txt to load LINGO solutions, merge and apply edits. The resulted blind test file can be found under submissions. It can be zipped and submitted to the BEA CodeLab website (https://competitions.codalab.org/competitions/20228) for evaluations.

The data folder provides individual GEC system output files, and .m2 files generated using ERRANT for the listed systems. For more information, please visit the ERRANT github page.

We include the IP combined .m2 files under merged_m2, and the corresponding text files under submissions.

License

The source code and models in this repository are licensed under the GNU General Public License v3.0 (see LICENSE). For further research interests and commercial use of the code and models, please contact Ruixi Lin ([email protected]) and Prof. Hwee Tou Ng ([email protected]).

Owner
NUS NLP Group
National University of Singapore
NUS NLP Group
Official implementation of Meta-StyleSpeech and StyleSpeech

Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation Dongchan Min, Dong Bok Lee, Eunho Yang, and Sung Ju Hwang This is an official code

min95 168 Dec 28, 2022
Code for our paper at ECCV 2020: Post-Training Piecewise Linear Quantization for Deep Neural Networks

PWLQ Updates 2020/07/16 - We are working on getting permission from our institution to release our source code. We will release it once we are granted

54 Dec 15, 2022
PyTorch implementation of federated learning framework based on the acceleration of global momentum

Federated Learning with Acceleration of Global Momentum PyTorch implementation of federated learning framework based on the acceleration of global mom

0 Dec 23, 2021
Official Implementation of PCT

Official Implementation of PCT Prerequisites python == 3.8.5 Please make sure you have the following libraries installed: numpy torch=1.4.0 torchvisi

32 Nov 21, 2022
Using image super resolution models with vapoursynth and speeding them up with TensorRT

vs-RealEsrganAnime-tensorrt-docker Using image super resolution models with vapoursynth and speeding them up with TensorRT. Also a docker image since

4 Aug 23, 2022
LUKE -- Language Understanding with Knowledge-based Embeddings

LUKE (Language Understanding with Knowledge-based Embeddings) is a new pre-trained contextualized representation of words and entities based on transf

Studio Ousia 587 Dec 30, 2022
Safe Local Motion Planning with Self-Supervised Freespace Forecasting, CVPR 2021

Safe Local Motion Planning with Self-Supervised Freespace Forecasting By Peiyun Hu, Aaron Huang, John Dolan, David Held, and Deva Ramanan Citing us Yo

Peiyun Hu 90 Dec 01, 2022
Tackling Obstacle Tower Challenge using PPO & A2C combined with ICM.

Obstacle Tower Challenge using Deep Reinforcement Learning Unity Obstacle Tower is a challenging realistic 3D, third person perspective and procedural

Zhuoyu Feng 5 Feb 10, 2022
You Only Look Once for Panopitic Driving Perception

You Only 👀 Once for Panoptic 🚗 Perception You Only Look at Once for Panoptic driving Perception by Dong Wu, Manwen Liao, Weitian Zhang, Xinggang Wan

Hust Visual Learning Team 1.4k Jan 04, 2023
Demystifying How Self-Supervised Features Improve Training from Noisy Labels

Demystifying How Self-Supervised Features Improve Training from Noisy Labels This code is a PyTorch implementation of the paper "[Demystifying How Sel

<a href=[email protected]"> 4 Oct 14, 2022
Python package provinding tools for artistic interactive applications using AI

Documentation redrawing Python package provinding tools for artistic interactive applications using AI Created by ReDrawing Campinas team for the Open

ReDrawing Campinas 1 Sep 30, 2021
Pytorch implementation of Integrating Tree Path in Transformer for Code Representation

This is an official Pytorch implementation of the approaches proposed in: Han Peng, Ge Li, Wenhan Wang, Yunfei Zhao, Zhi Jin “Integrating Tree Path in

Han Peng 16 Dec 23, 2022
基于tensorflow 2.x的图片识别工具集

Classification.tf2 基于tensorflow 2.x的图片识别工具集 功能 粗粒度场景图片分类 细粒度场景图片分类 其他场景图片分类 模型部署 tensorflow serving本地推理和docker部署 tensorRT onnx ... 数据集 https://hyper.a

Wei Qi 1 Nov 03, 2021
Attack on Confidence Estimation algorithm from the paper "Disrupting Deep Uncertainty Estimation Without Harming Accuracy"

Attack on Confidence Estimation (ACE) This repository is the official implementation of "Disrupting Deep Uncertainty Estimation Without Harming Accura

3 Mar 30, 2022
Exploring the link between uncertainty estimates obtained via "exact" Bayesian inference and out-of-distribution (OOD) detection.

Uncertainty-based OOD detection Exploring the link between uncertainty estimates obtained by "exact" Bayesian inference and out-of-distribution (OOD)

Christian Henning 1 Nov 05, 2022
[CVPR2021] Look before you leap: learning landmark features for one-stage visual grounding.

LBYL-Net This repo implements paper Look Before You Leap: Learning Landmark Features For One-Stage Visual Grounding CVPR 2021. Getting Started Prerequ

SVIP Lab 45 Dec 12, 2022
This is a Deep Leaning API for classifying emotions from human face and human audios.

Emotion AI This is a Deep Leaning API for classifying emotions from human face and human audios. Starting the server To start the server first you nee

crispengari 5 Oct 02, 2022
The repository for the paper "When Do You Need Billions of Words of Pretraining Data?"

pretraining-learning-curves This is the repository for the paper When Do You Need Billions of Words of Pretraining Data? Edge Probing We use jiant1 fo

ML² AT CILVR 19 Nov 25, 2022
An Abstract Cyber Security Simulation and Markov Game for OpenAI Gym

gym-idsgame An Abstract Cyber Security Simulation and Markov Game for OpenAI Gym gym-idsgame is a reinforcement learning environment for simulating at

Kim Hammar 29 Dec 03, 2022
Source code of the paper Meta-learning with an Adaptive Task Scheduler.

ATS About Source code of the paper Meta-learning with an Adaptive Task Scheduler. If you find this repository useful in your research, please cite the

Huaxiu Yao 16 Dec 26, 2022