Course material for the Multi-agents and computer graphics course

Overview

TC2008B

Course material for the Multi-agents and computer graphics course.

Setup instructions

  • Strongly recommend using a custom conda environment.
  • Install python 3.8 in the environment: conda install python=3.8 Using 3.8 for compatibility reasons. Maybe 3.9 or 3.10 are compatible with all the packages, but will have to check.
  • Installing mesa: pip install mesa
  • Installing flask to mount the service: pip install flask
  • By this moment, the environment will have all the packages needed for the project to run.

Instructions to run the local server and the Unity application

  • Run either the python web server: Server/tc2008B_server.py, or the flask server: Server/tc2008B_flask.py. Flask is considerably easier to setup and use, and I strongly recommend its use over python's http.server module. Additionally, IBM cloud example used flask.
  • To run the python web server:
python tc2008B_server.py
  • To run a flask app:
export FLASK_APP=tc_2008B_flash.py
flask run
  • You can change the name of the app you want to run by changing the environment variable FLASK_APP.

  • Alternatively, if you used the following code in your flask server:

if __name__=='__main__':
    app.run(host="localhost", port=8585, debug=True)

you can run it using:

python tc2008B_flask.py
  • To run a flask app on a different host or port:
flask run --host=0.0.0.0 --port=8585
  • Either of these servers is what will run on the cloud.
  • Once the server is running, launch the Unity scene TC2008B that is in the folder: IntegrationTest.
  • The scene has two game objects: AgentController and AgentControllerUpdate. I left both so that different functionality can be tested: AgentController works with the response of the python web server, while AgentControllerUpdate works with the reponse from the flask server.
  • I updated the AgentController.cs code, and introduced AgentControllerUpdate.cs. Each script parses data differently, depending on the response from either the python web server, or from the flask server. The AgentController.cs script parses text data, while AgentControllerUpdate.cs parses JSON data. I strongly recommend that we use JSON data.
  • The scripts are listening to port 8585 (http://localhost:8585). Double check that your server is launching on that port; specially if you are using a flask server.
  • If the Unity application is not running, or has import issues, I included the Unity package that has the scene Sergio Ruiz provided.

Instruction to run the cloud server and Unity application

Installing dependencies, and locally running the sample

# ...first add the Cloud Foundry Foundation public key and package repository to your system
wget -q -O - https://packages.cloudfoundry.org/debian/cli.cloudfoundry.org.key | sudo apt-key add -
echo "deb https://packages.cloudfoundry.org/debian stable main" | sudo tee /etc/apt/sources.list.d/cloudfoundry-cli.list
# ...then, update your local package index, then finally install the cf CLI
sudo apt update
sudo apt install cf8-cli
  • To get the sample app running:
git clone https://github.com/IBM-Cloud/get-started-python
cd get-started-python
  • To run locally:
pip install -r requirements.txt
python hello.py

To deply the sample to the cloud

  • All the requiered files for the sample app to run are inside the IBMCloud folder.
  • We first need a manifest.yml file. The one provided in the example repository contains the following:
applications:
 - name: GetStartedPython
   random-route: true
   memory: 128M
  • You can use the Cloud Foundry CLI to deploy apps. Choose your API endpoint:
cf api 
   

   

Replace the API-endpoint in the command with an API endpoint from the following list:

URL Region
https://api.ng.bluemix.net US South
https://api.eu-de.bluemix.net Germany
https://api.eu-gb.bluemix.net United Kingdom
https://api.au-syd.bluemix.net Sydney
  • Login to your IBM Cloud account:
cf login
  • From within the get-started-python directory push your app to IBM Cloud:
cf push
  • This process can take a while. All the dependencies are downloaded and installed, and the app in started.
  • After you push the application, in the cloud dashboard you can see a new cloud foundry app.
  • This can take a minute. If there is an error in the deployment process you can use the command cf logs --recent to troubleshoot.
  • When deployment completes you should see a message indicating that your app is running. View your app at the URL listed in the output of the push command. You can also issue the cf apps.
  • With the cf apps command you can see the route for the app.

To deploy a custom app to the cloud

  • I created an app within the cloud foundry in the ibm cloud by following the document Manual IBM Cloud - Python.pdf.
  • Created an additional folder inside the IBMCloud folder, named boids, that contains the required files.
  • In the manifest.yml I renamed the name to the one I used for the app in cloud foundry. From GetStartedPython to Boids.
  • Then, modified the ProcFile file as follows:
web: python tc2008B_flask.py
  • Modified the setup.py file, but I do not think it matters.
  • Then changed to the boids folder, and used:
cf push
  • Then, update the url for the service in Unity with the url for the service that cloud foundry assigns.

Notes

  • Using VSCode to develop everything.
  • Although not stated in the requirements, Git needs to be installed on the system.
  • I am running windows, and using the WSL. I ran the server code in WSL, and the Unity client in windows. My WSL machine runs Ubuntu 20.
  • Using Thunder Client extension as a replacement for postman to test the apis.
  • Pip does not allow us to search anymore.
  • As of 2021-10-17, the WWWForm method to post from Unity to the web service still works with Unity 20.20.3.4. However, the support apparently is going away soon.
  • Using flask because it is ideal for building smaller applications. Django could be used, but since it is much more robust, the additional utilities were not needed for this project.
  • The demo app push process went rather smoothly, but for the boids app it did not. It took too long, and ended up failing with a timeout error. I issued the command again.
  • Timeout again. Modified the manifest, and tried again.
  • After that, the app failed when it tried to start. Apparently, numpy was missing from the requirements.

TO DO

  • [ x ] Add the mesa code instead of the Boids code.
  • [ x ] Check synchronization, clients, maybe in the cloud, most likely in flask
  • Check cloud documentation or ask for a course? Instances, connections, etc.

Dependencies

Handwritten Text Recognition (HTR) using TensorFlow 2.x

Handwritten Text Recognition (HTR) system implemented using TensorFlow 2.x and trained on the Bentham/IAM/Rimes/Saint Gall/Washington offline HTR data

Arthur Flôr 160 Dec 21, 2022
Pixel art search engine for opengameart

Pixel Art Reverse Image Search for OpenGameArt What does the final search look like? The final search with an example can be found here. It looks like

Eivind Magnus Hvidevold 92 Nov 06, 2022
Image processing using OpenCv

Image processing using OpenCv Write a program that opens the webcam, and the user selects one of the following on the video: ✅ If the user presses the

M.Najafi 4 Feb 18, 2022
Connect Aseprite to Blender for painting pixelart textures in real time

Pribambase Pribambase is a small tool that connects Aseprite and Blender, to allow painting with instant viewport feedback and all functionality of ex

117 Jan 03, 2023
pyntcloud is a Python library for working with 3D point clouds.

pyntcloud is a Python library for working with 3D point clouds.

David de la Iglesia Castro 1.2k Jan 07, 2023
🖺 OCR using tensorflow with attention

tensorflow-ocr 🖺 OCR using tensorflow with attention, batteries included Installation git clone --recursive http://github.com/pannous/tensorflow-ocr

646 Nov 11, 2022
A program that takes in the hand gesture displayed by the user and translates ASL.

Interactive-ASL-Recognition Using the framework mediapipe made by google, OpenCV library and through self teaching, I was able to create a program tha

Riddhi Bajaj 3 Nov 22, 2021
make a better chinese character recognition OCR than tesseract

deep ocr See README_en.md for English installation documentation. 只在ubuntu下面测试通过,需要virtualenv安装,安装路径可自行调整: git clone https://github.com/JinpengLI/deep

Jinpeng 1.5k Dec 28, 2022
SCOUTER: Slot Attention-based Classifier for Explainable Image Recognition

SCOUTER: Slot Attention-based Classifier for Explainable Image Recognition PDF Abstract Explainable artificial intelligence has been gaining attention

87 Dec 26, 2022
Binarize document images

Binarization Binarization for document images Examples Introduction This tool performs document image binarization (i.e. transform colour/grayscale to

QURATOR-SPK 48 Jan 02, 2023
Super Mario Game With Python

Super_Mario Hello all this is a simple python program which tries to use our body as a controller for the super mario game Here I have used media pipe

Adarsh Badagala 219 Nov 25, 2022
PyQT5 app that colorize black & white pictures using CNN(use pre-trained model which was made with OpenCV)

About PyQT5 app that colorize black & white pictures using CNN(use pre-trained model which was made with OpenCV) Colorizor Приложение для проекта Yand

1 Apr 04, 2022
TedEval: A Fair Evaluation Metric for Scene Text Detectors

TedEval: A Fair Evaluation Metric for Scene Text Detectors Official Python 3 implementation of TedEval | paper | slides Chae Young Lee, Youngmin Baek,

Clova AI Research 167 Nov 20, 2022
Tool which allow you to detect and translate text.

Text detection and recognition This repository contains tool which allow to detect region with text and translate it one by one. Description Two pretr

Damian Panek 176 Nov 28, 2022
Repository for playing the computer vision apps: People analytics on Raspberry Pi.

play-with-torch Repository for playing the computer vision apps: People analytics on Raspberry Pi. Tools Tested Hardware RasberryPi 4 Model B here, RA

eMHa 1 Sep 23, 2021
零样本学习测评基准,中文版

ZeroCLUE 零样本学习测评基准,中文版 零样本学习是AI识别方法之一。 简单来说就是识别从未见过的数据类别,即训练的分类器不仅仅能够识别出训练集中已有的数据类别, 还可以对于来自未见过的类别的数据进行区分。 这是一个很有用的功能,使得计算机能够具有知识迁移的能力,并无需任何训练数据, 很符合现

CLUE benchmark 27 Dec 10, 2022
computer vision, image processing and machine learning on the web browser or node.

Image processing and Machine learning labs   computer vision, image processing and machine learning on the web browser or node note Fast Fourier Trans

ryohei tanaka 487 Nov 11, 2022
This is a repository to learn and get more computer vision skills, make robotics projects integrating the computer vision as a perception tool and create a lot of awesome advanced controllers for the robots of the future.

This is a repository to learn and get more computer vision skills, make robotics projects integrating the computer vision as a perception tool and create a lot of awesome advanced controllers for the

Elkin Javier Guerra Galeano 17 Nov 03, 2022
[EMNLP 2021] Improving and Simplifying Pattern Exploiting Training

ADAPET This repository contains the official code for the paper: "Improving and Simplifying Pattern Exploiting Training". The model improves and simpl

Rakesh R Menon 138 Dec 26, 2022
Image Detector and Convertor App created using python's Pillow, OpenCV, cvlib, numpy and streamlit packages.

Image Detector and Convertor App created using python's Pillow, OpenCV, cvlib, numpy and streamlit packages.

Siva Prakash 11 Jan 02, 2022