Official code for "Towards An End-to-End Framework for Flow-Guided Video Inpainting" (CVPR2022)

Overview

E2FGVI (CVPR 2022)

PWC PWC

Python 3.7 pytorch 1.6.0

English | 简体中文

This repository contains the official implementation of the following paper:

Towards An End-to-End Framework for Flow-Guided Video Inpainting
Zhen Li#, Cheng-Ze Lu#, Jianhua Qin, Chun-Le Guo*, Ming-Ming Cheng
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022

[Paper] [Demo Video (Youtube)] [演示视频 (B站)] [Project Page (TBD)] [Poster (TBD)]

You can try our colab demo here: Open In Colab

News

  • 2022.05.15: We release E2FGVI-HQ, which can handle videos with arbitrary resolution. This model could generalize well to much higher resolutions, while it only used 432x240 videos for training. Besides, it performs better than our original model on both PSNR and SSIM metrics. 🔗 Download links: [Google Drive] [Baidu Disk] 🎥 Demo video: [Youtube] [B站]

  • 2022.04.06: Our code is publicly available.

Demo

teaser

More examples (click for details):

Coco (click me)
Tennis
Space
Motocross

Overview

overall_structure

🚀 Highlights:

  • SOTA performance: The proposed E2FGVI achieves significant improvements on all quantitative metrics in comparison with SOTA methods.
  • Highly effiency: Our method processes 432 × 240 videos at 0.12 seconds per frame on a Titan XP GPU, which is nearly 15× faster than previous flow-based methods. Besides, our method has the lowest FLOPs among all compared SOTA methods.

Work in Progress

  • Update website page
  • Hugging Face demo
  • Efficient inference

Dependencies and Installation

  1. Clone Repo

    git clone https://github.com/MCG-NKU/E2FGVI.git
  2. Create Conda Environment and Install Dependencies

    conda env create -f environment.yml
    conda activate e2fgvi
    • Python >= 3.7
    • PyTorch >= 1.5
    • CUDA >= 9.2
    • mmcv-full (following the pipeline to install)

    If the environment.yml file does not work for you, please follow this issue to solve the problem.

Get Started

Prepare pretrained models

Before performing the following steps, please download our pretrained model first.

Model 🔗 Download Links Support Arbitrary Resolution ? PSNR / SSIM / VFID (DAVIS)
E2FGVI [Google Drive] [Baidu Disk] 33.01 / 0.9721 / 0.116
E2FGVI-HQ [Google Drive] [Baidu Disk] 33.06 / 0.9722 / 0.117

Then, unzip the file and place the models to release_model directory.

The directory structure will be arranged as:

release_model
   |- E2FGVI-CVPR22.pth
   |- E2FGVI-HQ-CVPR22.pth
   |- i3d_rgb_imagenet.pt (for evaluating VFID metric)
   |- README.md

Quick test

We provide two examples in the examples directory.

Run the following command to enjoy them:

# The first example (using split video frames)
python test.py --model e2fgvi (or e2fgvi_hq) --video examples/tennis --mask examples/tennis_mask  --ckpt release_model/E2FGVI-CVPR22.pth (or release_model/E2FGVI-HQ-CVPR22.pth)
# The second example (using mp4 format video)
python test.py --model e2fgvi (or e2fgvi_hq) --video examples/schoolgirls.mp4 --mask examples/schoolgirls_mask  --ckpt release_model/E2FGVI-CVPR22.pth (or release_model/E2FGVI-HQ-CVPR22.pth)

The inpainting video will be saved in the results directory. Please prepare your own mp4 video (or split frames) and frame-wise masks if you want to test more cases.

Note: E2FGVI always rescales the input video to a fixed resolution (432x240), while E2FGVI-HQ does not change the resolution of the input video. If you want to custom the output resolution, please use the --set_size flag and set the values of --width and --height.

Example:

# Using this command to output a 720p video
python test.py --model e2fgvi_hq --video <video_path> --mask <mask_path>  --ckpt release_model/E2FGVI-HQ-CVPR22.pth --set_size --width 1280 --height 720

Prepare dataset for training and evaluation

Dataset YouTube-VOS DAVIS
Details For training (3,471) and evaluation (508) For evaluation (50 in 90)
Images [Official Link] (Download train and test all frames) [Official Link] (2017, 480p, TrainVal)
Masks [Google Drive] [Baidu Disk] (For reproducing paper results)

The training and test split files are provided in datasets/<dataset_name>.

For each dataset, you should place JPEGImages to datasets/<dataset_name>.

Then, run sh datasets/zip_dir.sh (Note: please edit the folder path accordingly) for compressing each video in datasets/<dataset_name>/JPEGImages.

Unzip downloaded mask files to datasets.

The datasets directory structure will be arranged as: (Note: please check it carefully)

datasets
   |- davis
      |- JPEGImages
         |- <video_name>.zip
         |- <video_name>.zip
      |- test_masks
         |- <video_name>
            |- 00000.png
            |- 00001.png   
      |- train.json
      |- test.json
   |- youtube-vos
      |- JPEGImages
         |- <video_id>.zip
         |- <video_id>.zip
      |- test_masks
         |- <video_id>
            |- 00000.png
            |- 00001.png
      |- train.json
      |- test.json   
   |- zip_file.sh

Evaluation

Run one of the following commands for evaluation:

 # For evaluating E2FGVI model
 python evaluate.py --model e2fgvi --dataset <dataset_name> --data_root datasets/ --ckpt release_model/E2FGVI-CVPR22.pth
 # For evaluating E2FGVI-HQ model
 python evaluate.py --model e2fgvi_hq --dataset <dataset_name> --data_root datasets/ --ckpt release_model/E2FGVI-HQ-CVPR22.pth

You will get scores as paper reported if you evaluate E2FGVI. The scores of E2FGVI-HQ can be found in [Prepare pretrained models].

The scores will also be saved in the results/<model_name>_<dataset_name> directory.

Please --save_results for further evaluating temporal warping error.

Training

Our training configures are provided in train_e2fgvi.json (for E2FGVI) and train_e2fgvi_hq.json (for E2FGVI-HQ).

Run one of the following commands for training:

 # For training E2FGVI
 python train.py -c configs/train_e2fgvi.json
 # For training E2FGVI-HQ
 python train.py -c configs/train_e2fgvi_hq.json

You could run the same command if you want to resume your training.

The training loss can be monitored by running:

tensorboard --logdir release_model                                                   

You could follow this pipeline to evaluate your model.

Results

Quantitative results

quantitative_results

Citation

If you find our repo useful for your research, please consider citing our paper:

@inproceedings{liCvpr22vInpainting,
   title={Towards An End-to-End Framework for Flow-Guided Video Inpainting},
   author={Li, Zhen and Lu, Cheng-Ze and Qin, Jianhua and Guo, Chun-Le and Cheng, Ming-Ming},
   booktitle={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
   year={2022}
}

Contact

If you have any question, please feel free to contact us via zhenli1031ATgmail.com or czlu919AToutlook.com.

License

Licensed under a Creative Commons Attribution-NonCommercial 4.0 International for Non-commercial use only. Any commercial use should get formal permission first.

Acknowledgement

This repository is maintained by Zhen Li and Cheng-Ze Lu.

This code is based on STTN, FuseFormer, Focal-Transformer, and MMEditing.

Owner
Media Computing Group @ Nankai University
Media Computing Group at Nankai University, led by Prof. Ming-Ming Cheng.
Media Computing Group @ Nankai University
Volumetric Correspondence Networks for Optical Flow, NeurIPS 2019.

VCN: Volumetric correspondence networks for optical flow [project website] Requirements python 3.6 pytorch 1.1.0-1.3.0 pytorch correlation module (opt

Gengshan Yang 144 Dec 06, 2022
Exposure Time Calculator (ETC) and radial velocity precision estimator for the Near InfraRed Planet Searcher (NIRPS) spectrograph

NIRPS-ETC Exposure Time Calculator (ETC) and radial velocity precision estimator for the Near InfraRed Planet Searcher (NIRPS) spectrograph February 2

Nolan Grieves 2 Sep 15, 2022
AlphaNet Improved Training of Supernet with Alpha-Divergence

AlphaNet: Improved Training of Supernet with Alpha-Divergence This repository contains our PyTorch training code, evaluation code and pretrained model

Facebook Research 87 Oct 10, 2022
Manifold Alignment for Semantically Aligned Style Transfer

Manifold Alignment for Semantically Aligned Style Transfer [Paper] Getting Started MAST has been tested on CentOS 7.6 with python = 3.6. It supports

35 Nov 14, 2022
A collection of random and hastily hacked together scripts for investigating EU-DCC

A collection of random and hastily hacked together scripts for investigating EU-DCC

Ryan Barrett 8 Mar 01, 2022
[CVPR 2021] Official PyTorch Implementation for "Iterative Filter Adaptive Network for Single Image Defocus Deblurring"

IFAN: Iterative Filter Adaptive Network for Single Image Defocus Deblurring Checkout for the demo (GUI/Google Colab)! The GUI version might occasional

Junyong Lee 173 Dec 30, 2022
Code for the ICCV2021 paper "Personalized Image Semantic Segmentation"

PSS: Personalized Image Semantic Segmentation Paper PSS: Personalized Image Semantic Segmentation Yu Zhang, Chang-Bin Zhang, Peng-Tao Jiang, Ming-Ming

张宇 15 Jul 09, 2022
In this project, we develop a face recognize platform based on MTCNN object-detection netcwork and FaceNet self-supervised network.

模式识别大作业——人脸检测与识别平台 本项目是一个简易的人脸检测识别平台,提供了人脸信息录入和人脸识别的功能。前端采用 html+css+js,后端采用 pytorch,

Xuhua Huang 5 Aug 02, 2022
ONNX Runtime Web demo is an interactive demo portal showing real use cases running ONNX Runtime Web in VueJS.

ONNX Runtime Web demo is an interactive demo portal showing real use cases running ONNX Runtime Web in VueJS. It currently supports four examples for you to quickly experience the power of ONNX Runti

Microsoft 58 Dec 18, 2022
Least Square Calibration for Peer Reviews

Least Square Calibration for Peer Reviews Requirements gurobipy - for solving convex programs GPy - for Bayesian baseline numpy pandas To generate p

Sigma <a href=[email protected]"> 1 Nov 01, 2021
Federated_learning codes used for the the paper "Evaluation of Federated Learning Aggregation Algorithms" and "A Federated Learning Aggregation Algorithm for Pervasive Computing: Evaluation and Comparison"

Federated Distance (FedDist) This is the code accompanying the Percom2021 paper "A Federated Learning Aggregation Algorithm for Pervasive Computing: E

GETALP 8 Jan 03, 2023
A pre-trained language model for social media text in Spanish

RoBERTuito A pre-trained language model for social media text in Spanish READ THE FULL PAPER Github Repository RoBERTuito is a pre-trained language mo

25 Dec 29, 2022
Code for this paper The Lottery Ticket Hypothesis for Pre-trained BERT Networks.

The Lottery Ticket Hypothesis for Pre-trained BERT Networks Code for this paper The Lottery Ticket Hypothesis for Pre-trained BERT Networks. [NeurIPS

VITA 122 Dec 14, 2022
Unsupervised Real-World Super-Resolution: A Domain Adaptation Perspective

Unofficial pytorch implementation of the paper "Unsupervised Real-World Super-Resolution: A Domain Adaptation Perspective"

16 Nov 21, 2022
Alleviating Over-segmentation Errors by Detecting Action Boundaries

Alleviating Over-segmentation Errors by Detecting Action Boundaries Forked from ASRF offical code. This repo is the a implementation of replacing orig

13 Dec 12, 2022
[AI6122] Text Data Management & Processing

[AI6122] Text Data Management & Processing is an elective course of MSAI, SCSE, NTU, Singapore. The repository corresponds to the AI6122 of Semester 1, AY2021-2022, starting from 08/2021. The instruc

HT. Li 1 Jan 17, 2022
A Kitti Road Segmentation model implemented in tensorflow.

KittiSeg KittiSeg performs segmentation of roads by utilizing an FCN based model. The model achieved first place on the Kitti Road Detection Benchmark

Marvin Teichmann 890 Jan 04, 2023
The versatile ocean simulator, in pure Python, powered by JAX.

Veros is the versatile ocean simulator -- it aims to be a powerful tool that makes high-performance ocean modeling approachable and fun. Because Veros

TeamOcean 245 Dec 20, 2022
The Noise Contrastive Estimation for softmax output written in Pytorch

An NCE implementation in pytorch About NCE Noise Contrastive Estimation (NCE) is an approximation method that is used to work around the huge computat

Kaiyu Shi 287 Nov 25, 2022
An off-line judger supporting distributed problem repositories

Thaw 中文 | English Thaw is an off-line judger supporting distributed problem repositories. Everyone can use Thaw release problems with license on GitHu

countercurrent_time 2 Jan 09, 2022