Neural network pruning for finding a sparse computational model for controlling a biological motor task.

Overview

MothPruning

Scientific Overview

Originally inspired by biological nervous systems, deep neural networks (DNNs) are powerful computational tools for modeling complex systems. DNNs are used in a diversity of domains and have helped solve some of the most intractable problems in physics, biology, and computer science. Despite their prevalence, the use of DNNs as a modeling tool comes with some major downsides. DNNs are highly overparameterized, which often results in them being difficult to generalize and interpret, as well as being incredibly computationally expensive. Unlike DNNs, which are often trained until they reach the highest accuracy possible, biological networks have to balance performance with robustness to a noisy and dynamic environment. Biological neural systems use a variety of mechanisms to promote specialized and efficient pathways capable of performing complex tasks in the presence of noise. One such mechanism, synaptic pruning, plays a significant role in refining task-specific behaviors. Synaptic pruning results in a more sparsely connected network that can still perform complex cognitive and motor tasks. Here, we draw inspiration from biology and use DNNs and the method of neural network pruning to find a sparse computational model for controlling a biological motor task.

In this work, we use the inertial dynamics model in [2] to simulate examples of M. sexta hovering flight. These data are used to train a DNN to learn the controllers for hovering. Drawing inspiration from pruning in biological neural systems, we sparsify the network using neural network pruning. Here, we prune weights based simply on their magnitudes, removing those weights closest to zero. Insects must maneuver through high noise environments to accomplish controlled flight. It is often assumed that there is a trade-off between perfect flight control and robustness to noise and that the sensory data may be limited by the signal-to-noise ratio. Thus the network need not train for the most accurate model since in practice noise prevents high-fidelity models from exhibiting their underlying accuracy. Rather, we seek to find the sparsest model capable of performing the task given the noisy environment. We employed two methods for neural network pruning: either through manually setting weights to zero or by utilizing binary masking layers. Furthermore, the DNN is pruned sequentially, meaning groups of weights are removed slowly from the network, with retraining in-between successive prunes, until a target sparsity is reached. Monte Carlo simulations are also used to quantify the statistical distribution of network weights during pruning given random initialization of network weights.

For more information, please see our paper [1].

This is an image!

Project Description

The deep, fully-connected neural network was constructed with ten input variables and seven output variables. The initial and final state space conditions are the inputs to the network: i, i, i, i, i, i, f, f, f, and f. The network predicts the control variables and the final derivatives of the state space in its output layer: x, y, , f, f, f, and f.

After the fully-connected network is trained to a minimum error, we used the method of neural network pruning to promote sparsity between the network layers. In this work, a target sparsity (percentage of pruned network weights) is specified and the smallest magnitude weights are forced to zero. The network is then retrained until a minimum error is reached. This process is repeated until most of the weights have been pruned from the network.

The training and pruning protocols were developed using Keras with the TensorFlow backend. To scale up training for the statistical analysis of many networks, the training and pruning protocols were parallelized using the Jax framework.

To ensure weights remain pruned during retraining, we implemented the pruning functionality of a TensorFlow built toolkit called the Model Optimization Toolkit. The toolkit contains functions for pruning deep neural networks. In the Model Optimization Toolkit, pruning is achieved through the use of binary masking layers that are multiplied element-wise to each weight matrix in the network.

To be able to train and analyze many neural networks, the training and pruning protocols were parallelized in the Jax framework. Jax however does not come with a toolkit for pruning, therefore pruning by way of the binary masking matrices was coded into the training loop.

Installation

Create new conda environment with tools for generating data and training network (Note that this environment requires a GPU and the correct NVIDIA drivers).

conda env create -f environment_ODE_DL.yml

Create kernelspec (so you can see this kernel in JupyterLab).

conda activate [environment name]
python -m ipykernel install --user --name [environment name]
conda deactivate

To install Jax and Flax please follow the instructions on the Jax Github.

Data

To use the TensorFlow version of this code, you need to gerenate simulations of moth hovering for the data. The Jax version (multi-network train and prune) has data provided in this repository.

cd MothMachineLearning/Underactuated/GenerateData

and use 010_OneTorqueParallelSims.ipynb to generate the simulations.

How to use

The following guide walks through the process of training and pruning many networks in parallel using the Jax framework. However, the TensorFlow code is also provided for experimentation and visualization.

Step 1: Train networks

cd MothMachineLearning/Underactuated/TrainNetwork/multiNetPrune/

First we train and prune the desired number of networks in parallel using the Jax framework. Choose the number of networks you wish to train/prune in parallel by adjusting the numParallel parameter. You can also define the number of layers, units, and other hyperparameters. Use the command

python3 step1_train.py

to train and prune the networks in parallel.

Step 2: Evaluate at prunes

Next, the networks need to be evaulated at each prune. Use the command

python3 step2_pruneEval.py

to evaluate the networks at each prune.

Step 3: Pre-process networks

This code prepares the networks for sparse network identification (explained in the next step). It essentially just reorganizes the data. Open and run step3_preprocess.ipynb to preprocess, making sure to change modeltimestamp and the file names to the correct ones for your run.

Step 4: Find sparse networks

This codes finds the optimally sparse networks. For each network, the most pruned version whose loss is below a specified threshold (here 0.001) is kept. For example, the image below is a single network that has gone through the sequential pruning process and the red line specifies the defined threshold. For this example, the optimally sparse network is the one pruned by 94% (i.e. 6% of the original weights remain).

This is an image!

The sparse networks are collected and saved to a file called sparseNetworks.pkl. Open and run step4_findSparse.ipynb, making sure to change modeltimestamp and the file names to the correct ones for your run.

Note that if a network does not have a single prune that is below the loss threshold, it will be skipped and not included in the list of sparseNetworks. For example, if you trained and pruned 10 networks and 3 did not have a prune below a loss of 0.001, the list sparseNetworks will be length 7.

References

[1] Zahn, O., Bustamante, Jr J., Switzer, C., Daniel, T., and Kutz, J. N. (2022). Pruning deep neural networks generates a sparse, bio-inspired nonlinear controller for insect flight.

[2] Bustamante, Jr J., Ahmed, M., Deora, T., Fabien, B., and Daniel, T. (2021). Abdominal movements in insect flight reshape the role of non-aerodynamic structures for flight maneuverability. J. Integrative and Comparative Biology. In revision.

Owner
Olivia Thomas
Physics graduate student at the University of Washington
Olivia Thomas
PyTorchVideo is a deeplearning library with a focus on video understanding work

PyTorchVideo is a deeplearning library with a focus on video understanding work. PytorchVideo provides resusable, modular and efficient components needed to accelerate the video understanding researc

Facebook Research 2.7k Jan 07, 2023
Pytorch implementation of the paper "Class-Balanced Loss Based on Effective Number of Samples"

Class-balanced-loss-pytorch Pytorch implementation of the paper Class-Balanced Loss Based on Effective Number of Samples presented at CVPR'19. Yin Cui

Vandit Jain 697 Dec 29, 2022
ROMP: Monocular, One-stage, Regression of Multiple 3D People, ICCV21

Monocular, One-stage, Regression of Multiple 3D People ROMP, accepted by ICCV 2021, is a concise one-stage network for multi-person 3D mesh recovery f

Yu Sun 937 Jan 04, 2023
This computer program provides a reference implementation of Lagrangian Monte Carlo in metric induced by the Monge patch

This computer program provides a reference implementation of Lagrangian Monte Carlo in metric induced by the Monge patch. The code was prepared to the final version of the accepted manuscript in AIST

Marcelo Hartmann 2 May 06, 2022
Pytorch implementation of our method for high-resolution (e.g. 2048x1024) photorealistic video-to-video translation.

vid2vid Project | YouTube(short) | YouTube(full) | arXiv | Paper(full) Pytorch implementation for high-resolution (e.g., 2048x1024) photorealistic vid

NVIDIA Corporation 8.1k Jan 01, 2023
Official code of Team Yao at Multi-Modal-Fact-Verification-2022

Official code of Team Yao at Multi-Modal-Fact-Verification-2022 A Multi-Modal Fact Verification dataset released as part of the De-Factify workshop in

Wei-Yao Wang 11 Nov 15, 2022
An official implementation of the Anchor DETR.

Anchor DETR: Query Design for Transformer-Based Detector Introduction This repository is an official implementation of the Anchor DETR. We encode the

MEGVII Research 276 Dec 28, 2022
Implementation of SiameseXML (ICML 2021)

SiameseXML Code for SiameseXML: Siamese networks meet extreme classifiers with 100M labels Best Practices for features creation Adding sub-words on to

Extreme Classification 35 Nov 06, 2022
Reinforcement Learning for finance

Reinforcement Learning for Finance We apply reinforcement learning for stock trading. Fetch Data Example import utils # fetch symbols from yahoo fina

Tomoaki Fujii 159 Jan 03, 2023
SWA Object Detection

SWA Object Detection This project hosts the scripts for training SWA object detectors, as presented in our paper: @article{zhang2020swa, title={SWA

237 Nov 28, 2022
Code for the CVPR2021 paper "Patch-NetVLAD: Multi-Scale Fusion of Locally-Global Descriptors for Place Recognition"

Patch-NetVLAD: Multi-Scale Fusion of Locally-Global Descriptors for Place Recognition This repository contains code for the CVPR2021 paper "Patch-NetV

QVPR 368 Jan 06, 2023
Graph Convolutional Networks for Temporal Action Localization (ICCV2019)

Graph Convolutional Networks for Temporal Action Localization This repo holds the codes and models for the PGCN framework presented on ICCV 2019 Graph

Runhao Zeng 318 Dec 06, 2022
(CVPR 2022 Oral) Official implementation for "Surface Representation for Point Clouds"

RepSurf - Surface Representation for Point Clouds [CVPR 2022 Oral] By Haoxi Ran* , Jun Liu, Chengjie Wang ( * : corresponding contact) The pytorch off

Haoxi Ran 264 Dec 23, 2022
Algorithmic encoding of protected characteristics and its implications on disparities across subgroups

Algorithmic encoding of protected characteristics and its implications on disparities across subgroups This repository contains the code for the paper

Team MIRA - BioMedIA 15 Oct 24, 2022
Crab is a flexible, fast recommender engine for Python that integrates classic information filtering recommendation algorithms in the world of scientific Python packages (numpy, scipy, matplotlib).

Crab - A Recommendation Engine library for Python Crab is a flexible, fast recommender engine for Python that integrates classic information filtering r

python-recsys 1.2k Dec 21, 2022
Image Restoration Toolbox (PyTorch). Training and testing codes for DPIR, USRNet, DnCNN, FFDNet, SRMD, DPSR, BSRGAN, SwinIR

Image Restoration Toolbox (PyTorch). Training and testing codes for DPIR, USRNet, DnCNN, FFDNet, SRMD, DPSR, BSRGAN, SwinIR

Kai Zhang 2k Dec 31, 2022
UI2I via StyleGAN2 - Unsupervised image-to-image translation method via pre-trained StyleGAN2 network

We proposed an unsupervised image-to-image translation method via pre-trained StyleGAN2 network. paper: Unsupervised Image-to-Image Translation via Pr

208 Dec 30, 2022
Implementation of a Transformer, but completely in Triton

Transformer in Triton (wip) Implementation of a Transformer, but completely in Triton. I'm completely new to lower-level neural net code, so this repo

Phil Wang 152 Dec 22, 2022
VLG-Net: Video-Language Graph Matching Networks for Video Grounding

VLG-Net: Video-Language Graph Matching Networks for Video Grounding Introduction Official repository for VLG-Net: Video-Language Graph Matching Networ

Mattia Soldan 25 Dec 04, 2022
Adversarial Texture Optimization from RGB-D Scans (CVPR 2020).

AdversarialTexture Adversarial Texture Optimization from RGB-D Scans (CVPR 2020). Scanning Data Download Please refer to data directory for details. B

Jingwei Huang 153 Nov 28, 2022