ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectives

Related tags

Deep LearningShinRL
Overview

Status: Under development (expect bug fixes and huge updates)

ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectives

ShinRL is an open-source JAX library specialized for the evaluation of reinforcement learning (RL) algorithms from both theoretical and practical perspectives. Please take a look at the paper for details.

QuickStart

QuickStart Try ShinRL at: experiments/QuickStart.ipynb.

import gym
from shinrl import DiscreteViSolver
import matplotlib.pyplot as plt

# make an env & a config
env = gym.make("ShinPendulum-v0")
config = DiscreteViSolver.DefaultConfig(explore="eps_greedy", approx="nn", steps_per_epoch=10000)

# make mixins
mixins = DiscreteViSolver.make_mixins(env, config)
# mixins == [DeepRlStepMixIn, QTargetMixIn, TbInitMixIn, NetActMixIn, NetInitMixIn, ShinExploreMixIn, ShinEvalMixIn, DiscreteViSolver]

# (optional) arrange mixins
# mixins.insert(2, UserDefinedMixIn)

# make & run a solver
dqn_solver = DiscreteViSolver.factory(env, config, mixins)
dqn_solver.run()

# plot performance
returns = dqn_solver.scalars["Return"]
plt.plot(returns["x"], returns["y"])

# plot learned q-values  (act == 0)
q0 = dqn_solver.tb_dict["Q"][:, 0]
env.plot_S(q0, title="Learned")

# plot oracle q-values  (act == 0)
q0 = env.calc_q(dqn_solver.tb_dict["ExploitPolicy"])[:, 0]
env.plot_S(q0, title="Oracle")

# plot optimal q-values  (act == 0)
q0 = env.calc_optimal_q()[:, 0]
env.plot_S(q0, title="Optimal")

Pendulum Example

Key Modules

overview

ShinRL consists of two main modules:

  • ShinEnv: Implement relatively small MDP environments with access to the oracle quantities.
  • Solver: Solve the environments (e.g., finding the optimal policy) with specified algorithms.

🔬 ShinEnv for Oracle Analysis

  • ShinEnv provides small environments with oracle methods that can compute exact quantities:

    • calc_q computes a Q-value table containing all possible state-action pairs given a policy.
    • calc_optimal_q computes the optimal Q-value table.
    • calc_visit calculates state visitation frequency table, for a given policy.
    • calc_return is a shortcut for computing exact undiscounted returns for a given policy.
  • Some environments support continuous action space and image observation. See the following table and shinrl/envs/__init__.py for the available environments.

Environment Dicrete action Continuous action Image Observation Tuple Observation
ShinMaze ✔️ ✔️
ShinMountainCar-v0 ✔️ ✔️ ✔️ ✔️
ShinPendulum-v0 ✔️ ✔️ ✔️ ✔️
ShinCartPole-v0 ✔️ ✔️ ✔️

🏭 Flexible Solver by MixIn

MixIn

  • A "mixin" is a class which defines and implements a single feature. ShinRL's solvers are instantiated by mixing some mixins.
  • By arranging mixins, you can easily implement your own idea on the ShinRL's code base. See experiments/QuickStart.ipynb for example.
  • The following code demonstrates how different mixins turn into "value iteration" and "deep Q learning":
import gym
from shinrl import DiscreteViSolver

env = gym.make("ShinPendulum-v0")

# run value iteration (dynamic programming)
config = DiscreteViSolver.DefaultConfig(approx="tabular", explore="oracle")
mixins = DiscreteViSolver.make_mixins(env, config)
# mixins == [TabularDpStepMixIn, QTargetMixIn, TbInitMixIn, ShinExploreMixIn, ShinEvalMixIn, DiscreteViSolver]
vi_solver = DiscreteViSolver.factory(env, config, mixins)
vi_solver.run()

# run deep Q learning 
config = DiscreteViSolver.DefaultConfig(approx="nn", explore="eps_greedy")
mixins = DiscreteViSolver.make_mixins(env, config)  
# mixins == [DeepRlStepMixIn, QTargetMixIn, TbInitMixIn, NetActMixIn, NetInitMixIn, ShinExploreMixIn, ShinEvalMixIn, DiscreteViSolver]
dql_solver = DiscreteViSolver.factory(env, config, mixins)
dql_solver.run()

# ShinRL also provides deep RL solvers with OpenAI Gym environment supports.
env = gym.make("CartPole-v0")
mixins = DiscreteViSolver.make_mixins(env, config)  
# mixins == [DeepRlStepMixIn, QTargetMixIn, TargetMixIn, NetActMixIn, NetInitMixIn, GymExploreMixIn, GymEvalMixIn, DiscreteViSolver]
dql_solver = DiscreteViSolver.factory(env, config, mixins)
dql_solver.run()

Installation

git clone [email protected]:omron-sinicx/ShinRL.git
cd ShinRL
pip install -e .

Test

cd ShinRL
make test

Format

cd ShinRL
make format

Docker

cd ShinRL
docker-compose up

Citation

# Neurips DRL WS 2021 version
@inproceedings{toshinori2021shinrl,
    author = {Kitamura, Toshinori and Yonetani, Ryo},
    title = {ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectives},
    year = {2021},
    booktitle = {Proceedings of the NeurIPS Deep RL Workshop},
}

# Arxiv version
@article{toshinori2021shinrlArxiv,
    author = {Kitamura, Toshinori and Yonetani, Ryo},
    title = {ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectives},
    year = {2021},
    url = {https://arxiv.org/abs/2112.04123},
    journal={arXiv preprint arXiv:2112.04123},
}
Official page of Patchwork (RA-L'21 w/ IROS'21)

Patchwork Official page of "Patchwork: Concentric Zone-based Region-wise Ground Segmentation with Ground Likelihood Estimation Using a 3D LiDAR Sensor

Hyungtae Lim 254 Jan 05, 2023
PowerGridworld: A Framework for Multi-Agent Reinforcement Learning in Power Systems

PowerGridworld provides users with a lightweight, modular, and customizable framework for creating power-systems-focused, multi-agent Gym environments that readily integrate with existing training fr

National Renewable Energy Laboratory 37 Dec 17, 2022
🔥 TensorFlow Code for technical report: "YOLOv3: An Incremental Improvement"

🆕 Are you looking for a new YOLOv3 implemented by TF2.0 ? If you hate the fucking tensorflow1.x very much, no worries! I have implemented a new YOLOv

3.6k Dec 26, 2022
Pre-trained Deep Learning models and demos (high quality and extremely fast)

OpenVINO™ Toolkit - Open Model Zoo repository This repository includes optimized deep learning models and a set of demos to expedite development of hi

OpenVINO Toolkit 3.4k Dec 31, 2022
Clean Machine Learning, a Coding Kata

Kata: Clean Machine Learning From Dirty Code First, open the Kata in Google Colab (or else download it) You can clone this project and launch jupyter-

Neuraxio 13 Nov 03, 2022
Tutorial on scikit-learn and IPython for parallel machine learning

Parallel Machine Learning with scikit-learn and IPython Video recording of this tutorial given at PyCon in 2013. The tutorial material has been rearra

Olivier Grisel 1.6k Dec 26, 2022
No-Reference Image Quality Assessment via Transformers, Relative Ranking, and Self-Consistency

This repository contains the implementation for the paper: No-Reference Image Quality Assessment via Transformers, Relative Ranking, and Self-Consiste

Alireza Golestaneh 75 Dec 30, 2022
Deep Sketch-guided Cartoon Video Inbetweening

Cartoon Video Inbetweening Paper | DOI | Video The source code of Deep Sketch-guided Cartoon Video Inbetweening by Xiaoyu Li, Bo Zhang, Jing Liao, Ped

Xiaoyu Li 37 Dec 22, 2022
Utilizes Pose Estimation to offer sprinters cues based on an image of their running form.

Running-Form-Correction Utilizes Pose Estimation to offer sprinters cues based on an image of their running form. How to Run Dependencies You will nee

3 Nov 08, 2022
InsCLR: Improving Instance Retrieval with Self-Supervision

InsCLR: Improving Instance Retrieval with Self-Supervision This is an official PyTorch implementation of the InsCLR paper. Download Dataset Dataset Im

Zelu Deng 25 Aug 30, 2022
Supplementary code for the AISTATS 2021 paper "Matern Gaussian Processes on Graphs".

Matern Gaussian Processes on Graphs This repo provides an extension for gpflow with Matérn kernels, inducing variables and trainable models implemente

41 Dec 17, 2022
Implementation of EMNLP 2017 Paper "Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog" using PyTorch and ParlAI

Language Emergence in Multi Agent Dialog Code for the Paper Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog Satwik Kottur, José M.

Karan Desai 105 Nov 25, 2022
Subgraph Based Learning of Contextual Embedding

SLiCE Self-Supervised Learning of Contextual Embeddings for Link Prediction in Heterogeneous Networks Dataset details: We use four public benchmark da

Pacific Northwest National Laboratory 27 Dec 01, 2022
Learning Versatile Neural Architectures by Propagating Network Codes

Learning Versatile Neural Architectures by Propagating Network Codes Mingyu Ding, Yuqi Huo, Haoyu Lu, Linjie Yang, Zhe Wang, Zhiwu Lu, Jingdong Wang,

Mingyu Ding 36 Dec 06, 2022
[ICCV 2021] Our work presents a novel neural rendering approach that can efficiently reconstruct geometric and neural radiance fields for view synthesis.

MVSNeRF Project page | Paper This repository contains a pytorch lightning implementation for the ICCV 2021 paper: MVSNeRF: Fast Generalizable Radiance

Anpei Chen 529 Dec 30, 2022
Instant-Teaching: An End-to-End Semi-Supervised Object Detection Framework

This repo is the official implementation of "Instant-Teaching: An End-to-End Semi-Supervised Object Detection Framework". @inproceedings{zhou2021insta

34 Dec 31, 2022
Source codes of CenterTrack++ in 2021 ICME Workshop on Big Surveillance Data Processing and Analysis

MOT Tracked object bounding box association (CenterTrack++) New association method based on CenterTrack. Two new branches (Tracked Size and IOU) are a

36 Oct 04, 2022
Implementation of Uniformer, a simple attention and 3d convolutional net that achieved SOTA in a number of video classification tasks

Uniformer - Pytorch Implementation of Uniformer, a simple attention and 3d convolutional net that achieved SOTA in a number of video classification ta

Phil Wang 90 Nov 24, 2022
CAPRI: Context-Aware Interpretable Point-of-Interest Recommendation Framework

CAPRI: Context-Aware Interpretable Point-of-Interest Recommendation Framework This repository contains a framework for Recommender Systems (RecSys), a

RecSys Lab 8 Jul 03, 2022
NR-GAN: Noise Robust Generative Adversarial Networks

Lexicon Enhanced Chinese Sequence Labeling Using BERT Adapter Code and checkpoints for the ACL2021 paper "Lexicon Enhanced Chinese Sequence Labelling

Takuhiro Kaneko 59 Dec 11, 2022