Implicit Model Specialization through DAG-based Decentralized Federated Learning

Overview

Federated Learning DAG Experiments

This repository contains software artifacts to reproduce the experiments presented in the Middleware '21 paper "Implicit Model Specialization through DAG-based Decentralized Federated Learning"

General Usage

Since we are still using TensorFlow 1, Python <=3.7 is required.

Depending on your setup, you can obtain the old python version using a version manager such as pyenv or using a Docker container:

cd federated-learning-dag
docker run -d --name federated-learning-dag \
  -v $PWD:/workspace \
  --workdir /workspace \
  --init --shm-size 8g \
  mcr.microsoft.com/vscode/devcontainers/python:3.7-bullseye \
    tail -f /dev/null
docker exec -it federated-learning-dag bash
# Run pipenv commands in this shell

# Clean up
docker rm -f federated-learning-dag 

Then, use pipenv to set up your environment. VS Code users can use the provided devcontainer template as a base environment. Run pipenv install to download the dependencies and run the code within a pipenv shell.

There are two execution variants: A default, single-threaded one, and an extended version using the 'ray' parallelism library.

Basic usage: python -m tangle.lab --help (or python -m tangle.ray --help).

By default, all experiments_figure_[*].py use ray for parallelism. This requires lots of main memory and a shared memory option for use within Docker. VS Code devcontainer users have to add "--shm-size", "8gb" (depending on the available memory) to the runArgs in .devcontainer/devcontainer.json.

To view a DAG (sometimes called a tangle) in a web browser, run python -m http.server in the repository root and open http://localhost:8000/viewer/. Enter the name of your experiment run and adjust the round slider to see something.

Obtaining the datasets

The contents of the ./data directory can be obtained from https://data.osmhpi.de/ipfs/QmQMe1Bd8X7tqQHWqcuS17AQZUqcfRQmNRgrenJD2o8xsS/.

Reproduction of the evaluation in the paper

The experiements in the paper can be reproduced by running python scripts in the root folder of this repository. They are organized by the figures in which the respective evaluation is presented and named experiments_figure_[*].py

The results of the federated averaging runs presented in Figure 9 as baseline can be reproduced by running run_fed_avg_[fmnist,poets,cifar].py The results presented in Table 2 are generated by the scripts for DAG-IS of Figure 9 as well.

Owner
Operating Systems and Middleware Group
Operating Systems and Middleware Group
PyTorch implementation of EGVSR: Efficcient & Generic Video Super-Resolution (VSR)

This is a PyTorch implementation of EGVSR: Efficcient & Generic Video Super-Resolution (VSR), using subpixel convolution to optimize the inference speed of TecoGAN VSR model. Please refer to the offi

789 Jan 04, 2023
Testing and Estimation of structural breaks in Stata

xtbreak estimating and testing for many known and unknown structural breaks in time series and panel data. For an overview of xtbreak test see xtbreak

Jan Ditzen 13 Jun 19, 2022
Code for "Multi-View Multi-Person 3D Pose Estimation with Plane Sweep Stereo"

Multi-View Multi-Person 3D Pose Estimation with Plane Sweep Stereo This repository includes the source code for our CVPR 2021 paper on multi-view mult

Jiahao Lin 66 Jan 04, 2023
Accurate identification of bacteriophages from metagenomic data using Transformer

PhaMer is a python library for identifying bacteriophages from metagenomic data. PhaMer is based on a Transorfer model and rely on protein-based vocab

Kenneth Shang 9 Nov 30, 2022
[WACV 2020] Reducing Footskate in Human Motion Reconstruction with Ground Contact Constraints

Reducing Footskate in Human Motion Reconstruction with Ground Contact Constraints Official implementation for Reducing Footskate in Human Motion Recon

Virginia Tech Vision and Learning Lab 38 Nov 01, 2022
The UI as a mobile display for OP25

OP25 Mobile Control Head A 'remote' control head that interfaces with an OP25 instance. We take advantage of some data end-points left exposed for the

Sarah Rose Giddings 13 Dec 28, 2022
Learning High-Speed Flight in the Wild

Learning High-Speed Flight in the Wild This repo contains the code associated to the paper Learning Agile Flight in the Wild. For more information, pl

Robotics and Perception Group 391 Dec 29, 2022
Deep learning models for classification of 15 common weeds in the southern U.S. cotton production systems.

CottonWeeds Deep learning models for classification of 15 common weeds in the southern U.S. cotton production systems. requirements pytorch torchsumma

Dong Chen 8 Jun 07, 2022
Self-Supervised depth kalilia

Self-Supervised depth kalilia

24 Oct 15, 2022
Image restoration with neural networks but without learning.

Warning! The optimization may not converge on some GPUs. We've personally experienced issues on Tesla V100 and P40 GPUs. When running the code, make s

Dmitry Ulyanov 7.4k Jan 01, 2023
Pmapper is a super-resolution and deconvolution toolkit for python 3.6+

pmapper pmapper is a super-resolution and deconvolution toolkit for python 3.6+. PMAP stands for Poisson Maximum A-Posteriori, a highly flexible and a

NASA Jet Propulsion Laboratory 8 Nov 06, 2022
Comp445 project - Data Communications & Computer Networks

COMP-445 Data Communications & Computer Networks Change Python version in Conda

Peng Zhao 2 Oct 03, 2022
Visualizer using audio and semantic analysis to explore BigGAN (Brock et al., 2018) latent space.

BigGAN Audio Visualizer Description This visualizer explores BigGAN (Brock et al., 2018) latent space by using pitch/tempo of an audio file to generat

Rush Kapoor 2 Nov 21, 2022
Official code for paper "ISNet: Costless and Implicit Image Segmentation for Deep Classifiers, with Application in COVID-19 Detection"

Official code for paper "ISNet: Costless and Implicit Image Segmentation for Deep Classifiers, with Application in COVID-19 Detection". LRPDenseNet.py

Pedro Ricardo Ariel Salvador Bassi 2 Sep 21, 2022
This repo contains implementation of different architectures for emotion recognition in conversations.

Emotion Recognition in Conversations Updates 🔥 🔥 🔥 Date Announcements 03/08/2021 🎆 🎆 We have released a new dataset M2H2: A Multimodal Multiparty

Deep Cognition and Language Research (DeCLaRe) Lab 1k Dec 30, 2022
Toolbox of models, callbacks, and datasets for AI/ML researchers.

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch Website • Installation • Main

Pytorch Lightning 1.4k Dec 30, 2022
Official Implementation for Fast Training of Neural Lumigraph Representations using Meta Learning.

Fast Training of Neural Lumigraph Representations using Meta Learning Project Page | Paper | Data Alexander W. Bergman, Petr Kellnhofer, Gordon Wetzst

Alex 39 Oct 08, 2022
Benchmark library for high-dimensional HPO of black-box models based on Weighted Lasso regression

LassoBench LassoBench is a library for high-dimensional hyperparameter optimization benchmarks based on Weighted Lasso regression. Note: LassoBench is

Kenan Šehić 5 Mar 15, 2022
Pytorch Implementation of Continual Learning With Filter Atom Swapping (ICLR'22 Spolight) Paper

Continual Learning With Filter Atom Swapping Pytorch Implementation of Continual Learning With Filter Atom Swapping (ICLR'22 Spolight) Paper If find t

11 Aug 29, 2022
A parametric soroban written with CADQuery.

A parametric soroban written in CADQuery The purpose of this project is to demonstrate how "code CAD" can be intuitive to learn. See soroban.py for a

Lee 4 Aug 13, 2022