(NeurIPS 2021) Realistic Evaluation of Transductive Few-Shot Learning

Overview

Realistic evaluation of transductive few-shot learning

Introduction

This repo contains the code for our NeurIPS 2021 submitted paper "Realistic evaluation of transductive few-shot learning". This is a framework that regroups all methods evaluated in our paper except for SIB and LR-ICI. Results provided in the paper can be reproduced with this repo. Code was developed under python 3.8.3 and pytorch 1.4.0.

1. Getting started

1.1 Quick installation (recommended) (Download datasets and models)

To download datasets and pre-trained models (checkpoints), follow instructions 1.1.1 to 1.1.2 of NeurIPS 2020 paper "TIM: Transductive Information Maximization" public implementation (https://github.com/mboudiaf/TIM)

1.1.1 Place datasets

Make sure to place the downloaded datasets (data/ folder) at the root of the directory.

1.1.2 Place models

Make sure to place the downloaded pre-trained models (checkpoints/ folder) at the root of the directory.

1.2 Manual installation

Follow instruction 1.2 of NeurIPS 2020 paper "TIM: Transductive Information Maximization" public implementation (https://github.com/mboudiaf/TIM) if facing issues with previous steps. Make sure to place data/ and checkpoints/ folders at the root of the directory.

2. Requirements

To install requirements:

conda create --name <env> --file requirements.txt

Where <env> is the name of your environment

3. Reproducing the main results

Before anything, activate the environment:

source activate <env>

3.1 Table 1 and 2 results in paper

Evaluation in a 5-shot scenario on mini-Imagenet using RN-18 as backbone (Table 1. in paper)

Method 1-shot 5-shot 10-shot 20-shot
SimpleShot 63.0 80.1 84.0 86.1
PT-MAP 60.1 (↓16.8) 67.1 (↓18.2) 68.8 (↓18.0) 70.4 (↓17.4)
LaplacianShot 65.4 (↓4.7) 81.6 (↓0.5) 84.1 (↓0.2) 86.0 (↑0.5)
BDCSPN 67.0 (↓2.4) 80.2 (↓1.8) 82.7 (↓1.4) 84.6 (↓1.1)
TIM 67.3 (↓4.5) 79.8 (↓4.1) 82.3 (↓3.8) 84.2 (↓3.7)
α-TIM 67.4 82.5 85.9 87.9

To reproduce the results from Table 1. and 2. in the paper, from the root of the directory execute this python command.

python3 -m src.main --base_config <path_to_base_config_file> --method_config <path_to_method_config_file> 

The <path_to_base_config_file> follows this hierarchy:

config/<balanced or dirichlet>/base_config/<resnet18 or wideres>/<mini or tiered or cub>/base_config.yaml

The <path_to_method_config_file> follows this hierarchy:

config/<balanced or dirichlet>/methods_config/<alpha_tim or baseline or baseline_pp or bdcspn or entropy_min or laplacianshot or protonet or pt_map or simpleshot or tim>.yaml

For instance, if you want to reproduce the results in the balanced setting on mini-Imagenet, using ResNet-18, with alpha-TIM method go to the root of the directory and execute:

python3 -m src.main --base_config config/balanced/base_config/resnet18/mini/base_config.yaml --method_config config/balanced/methods_config/alpha_tim.yaml

If you want to reproduce the results in the randomly balanced setting on mini-Imagenet, using ResNet-18, with alpha-TIM method go to the root of the directory and execute:

python3 -m src.main --base_config config/dirichlet/base_config/resnet18/mini/base_config.yaml --method_config config/dirichlet/methods_config/alpha_tim.yaml

Reusable data sampler module

One of our main contribution is our realistic task sampling method following Dirichlet's distribution. plot

Our realistic sampler can be found in sampler.py file. The sampler has been implemented following Pytorch's norms and in a way that it can be easily reused and integrated in other projects.

The following notebook exemple_realistic_sampler.ipynb is an exemple that shows how to initialize and use our realistic category sampler.

Contact

For further questions or details, reach out to Olivier Veilleux ([email protected])

Acknowledgements

Special thanks to the authors of NeurIPS 2020 paper "TIM: Transductive Information Maximization" (TIM) (https://github.com/mboudiaf/TIM) for publicly sharing their pre-trained models and their source code from which this repo was inspired from.

Owner
Olivier Veilleux
Olivier Veilleux
CM-NAS: Cross-Modality Neural Architecture Search for Visible-Infrared Person Re-Identification (ICCV2021)

CM-NAS Official Pytorch code of paper CM-NAS: Cross-Modality Neural Architecture Search for Visible-Infrared Person Re-Identification in ICCV2021. Vis

JDAI-CV 40 Nov 25, 2022
Official public repository of paper "Intention Adaptive Graph Neural Network for Category-Aware Session-Based Recommendation"

Intention Adaptive Graph Neural Network (IAGNN) This is the official repository of paper Intention Adaptive Graph Neural Network for Category-Aware Se

9 Nov 22, 2022
CT-Net: Channel Tensorization Network for Video Classification

[ICLR2021] CT-Net: Channel Tensorization Network for Video Classification @inproceedings{ li2021ctnet, title={{\{}CT{\}}-Net: Channel Tensorization Ne

33 Nov 15, 2022
Reinforcement Learning Theory Book (rus)

Reinforcement Learning Theory Book (rus)

qbrick 206 Nov 27, 2022
MoCoPnet - Deformable 3D Convolution for Video Super-Resolution

MoCoPnet: Exploring Local Motion and Contrast Priors for Infrared Small Target Super-Resolution Pytorch implementation of local motion and contrast pr

Xinyi Ying 28 Dec 15, 2022
一些经典的CTR算法的复现; LR, FM, FFM, AFM, DeepFM,xDeepFM, PNN, DCN, DCNv2, DIFM, AutoInt, FiBiNet,AFN,ONN,DIN, DIEN ... (pytorch, tf2.0)

CTR Algorithm 根据论文, 博客, 知乎等方式学习一些CTR相关的算法 理解原理并自己动手来实现一遍 pytorch & tf2.0 保持一颗学徒的心! Schedule Model pytorch tensorflow2.0 paper LR ✔️ ✔️ \ FM ✔️ ✔️ Fac

luo han 149 Dec 20, 2022
Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Pytorch Lightning 1.4k Jan 01, 2023
Algebraic effect handlers in Python

PyEffect: Algebraic effects in Python What IDK. Usage effects.handle(operation, handlers=None) effects.set_handler(effect, handler) Supported effects

Greg Werbin 5 Dec 27, 2021
Human Activity Recognition example using TensorFlow on smartphone sensors dataset and an LSTM RNN. Classifying the type of movement amongst six activity categories - Guillaume Chevalier

LSTMs for Human Activity Recognition Human Activity Recognition (HAR) using smartphones dataset and an LSTM RNN. Classifying the type of movement amon

Guillaume Chevalier 3.1k Dec 30, 2022
Neural-Pull: Learning Signed Distance Functions from Point Clouds by Learning to Pull Space onto Surfaces(ICML 2021)

Neural-Pull: Learning Signed Distance Functions from Point Clouds by Learning to Pull Space onto Surfaces(ICML 2021) This repository contains the code

149 Dec 15, 2022
Baseline powergrid model for NY

Baseline-powergrid-model-for-NY Table of Contents About The Project Built With Usage License Contact Acknowledgements About The Project As the urgency

Anderson Energy Lab at Cornell 6 Nov 24, 2022
This project uses Template Matching technique for object detecting by detection of template image over base image.

Object Detection Project Using OpenCV This project uses Template Matching technique for object detecting by detection the template image over base ima

Pratham Bhatnagar 7 May 29, 2022
Official PyTorch implementation of BlobGAN: Spatially Disentangled Scene Representations

BlobGAN: Spatially Disentangled Scene Representations Official PyTorch Implementation Paper | Project Page | Video | Interactive Demo BlobGAN.mp4 This

148 Dec 29, 2022
Code for ACL 21: Generating Query Focused Summaries from Query-Free Resources

marge This repository releases the code for Generating Query Focused Summaries from Query-Free Resources. Please cite the following paper [bib] if you

Yumo Xu 28 Nov 10, 2022
Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021.

NL-CSNet-Pytorch Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021. Note: this repo only shows the strategy of

WenxueCui 7 Nov 07, 2022
TRACER: Extreme Attention Guided Salient Object Tracing Network implementation in PyTorch

TRACER: Extreme Attention Guided Salient Object Tracing Network This paper was accepted at AAAI 2022 SA poster session. Datasets All datasets are avai

Karel 118 Dec 29, 2022
A tool for making map images from OpenTTD save games

OpenTTD Surveyor A tool for making map images from OpenTTD save games. This is not part of the main OpenTTD codebase, nor is it ever intended to be pa

Aidan Randle-Conde 9 Feb 15, 2022
An Exact Solver for Semi-supervised Minimum Sum-of-Squares Clustering

PC-SOS-SDP: an Exact Solver for Semi-supervised Minimum Sum-of-Squares Clustering PC-SOS-SDP is an exact algorithm based on the branch-and-bound techn

Antonio M. Sudoso 1 Nov 13, 2022
A paper using optimal transport to solve the graph matching problem.

GOAT A paper using optimal transport to solve the graph matching problem. https://arxiv.org/abs/2111.05366 Repo structure .github: Files specifying ho

neurodata 8 Jan 04, 2023
Tensorflow implementation of DeepLabv2

TF-deeplab This is a Tensorflow implementation of DeepLab, compatible with Tensorflow 1.2.1. Currently it supports both training and testing the ResNe

Chenxi Liu 21 Sep 27, 2022