MCML is a toolkit for semi-supervised dimensionality reduction and quantitative analysis of Multi-Class, Multi-Label data

Related tags

Machine LearningMCML
Overview

MCML

MCML is a toolkit for semi-supervised dimensionality reduction and quantitative analysis of Multi-Class, Multi-Label data. We demonstrate its use for single-cell datasets though the method can use any matrix as input.

MCML modules include the MCML and bMCML algorithms for dimensionality reduction, and MCML tools include functions for quantitative analysis of inter- and intra- distances between labeled groups and nearest neighbor metrics in the latent or ambient space. The modules are autoencoder-based neural networks with label-aware cost functions for weight optimization.

Briefly, MCML adapts the Neighborhood Component Analysis algorithm to utilize mutliple classes of labels for each observation (cell) to embed observations of the same labels close to each other. This essentially optimizes the latent space for k-Nearest Neighbors (KNN) classification.

bMCML demonstrates targeted reconstruction error, which optimizes for recapitulation of intra-label distances (the pairwise distances between cells within the same label).

tools include functions for inter- and intra-label distance calculations as well as metrics on the labels of n the k nearest neighbors of each observation. These can be performed on any latent or ambient space (matrix) input.

Requirements

You need Python 3.6 or later to run MCML. You can have multiple Python versions (2.x and 3.x) installed on the same system without problems.

In Ubuntu, Mint and Debian you can install Python 3 like this:

$ sudo apt-get install python3 python3-pip

For other Linux distributions, macOS and Windows, packages are available at

https://www.python.org/getit/

Quick start

MCML can be installed using pip:

$ python3 -m pip install -U MCML

If you want to run the latest version of the code, you can install from git:

$ python3 -m pip install -U git+git://github.com/pachterlab/MCML.git

Examples

Example data download:

$ wget --quiet https://caltech.box.com/shared/static/i66kelel9ouep3yw8bn2duudkqey190j
$ mv i66kelel9ouep3yw8bn2duudkqey190j mat.mtx
$ wget --quiet https://caltech.box.com/shared/static/dcmr36vmsxgcwneh0attqt0z6qm6vpg6
$ mv dcmr36vmsxgcwneh0attqt0z6qm6vpg6 metadata.csv

Extract matrix (obs x features) and labels for each obs:

>>> import pandas as pd
>>> import scipy.io as sio
>>> import numpy as np

>>> mat = sio.mmread('mat.mtx') #Is a centered and scaled matrix (scaling input is optional)
>>> mat.shape
(3850, 1999)

>>> meta = pd.read_csv('metadata.csv')
>>> meta.head()
 Unnamed: 0          sample_name  smartseq_cluster_id  smartseq_cluster  ... n_genes percent_mito pass_count_filter  pass_mito_filter
0  SM-GE4R2_S062_E1-50  SM-GE4R2_S062_E1-50                   46   Nr5a1_9|11 Rorb  ...    9772          0.0              True              True
1  SM-GE4SI_S356_E1-50  SM-GE4SI_S356_E1-50                   46   Nr5a1_9|11 Rorb  ...    8253          0.0              True              True
2  SM-GE4SI_S172_E1-50  SM-GE4SI_S172_E1-50                   46   Nr5a1_9|11 Rorb  ...    9394          0.0              True              True
3   LS-15034_S07_E1-50   LS-15034_S07_E1-50                   42  Nr5a1_4|7 Glipr1  ...   10643          0.0              True              True
4   LS-15034_S28_E1-50   LS-15034_S28_E1-50                   42  Nr5a1_4|7 Glipr1  ...   10550          0.0              True              True

>>> cellTypes = list(meta.smartseq_cluster)
>>> sexLabels = list(meta.sex_label)
>>> len(sexLabels)
3850



To run the MCML algorithm for dimensionality reduction (Python 3):

>>> from MCML.modules import MCML, bMCML

>>> mcml = MCML(n_latent = 50, epochs = 100) #Initialize MCML class

>>> latentMCML = mcml.fit(mat, np.array([cellTypes,sexLabels]) , fracNCA = 0.8 , silent = True) #Run MCML
>>> latentMCML.shape
(3850, 50)

This incorporates both the cell type and sex labels into the latent space construction. Use plotLosses() to view the loss function components over the training epochs.

>>> mcml.plotLosses(figsize=(10,3),axisFontSize=10,tickFontSize=8) #Plot loss over epochs



To run the bMCML algorithm for dimensionality reduction (Python 3):

>>> bmcml = bMCML(n_latent = 50, epochs = 100) #Initialize bMCML class


>>> latentbMCML = bmcml.fit(mat, np.array(cellTypes), np.array(sexLabels), silent=True) #Run bMCML
>>> latentbMCML.shape
(3850, 50)

>>> bmcml.plotLosses(figsize=(10,3),axisFontSize=10,tickFontSize=8) #Plot loss over epochs

bMCML is optimizing for the intra-distances of the sex labels i.e. the pairwise distances of cells in each sex for each cell type.

For both bMCML and MCML objects, fit() can be replaced with trainTest() to train the algorithms on a subset of the full data and apply the learned weights to the remaining test data. This offers a method assessing overfitting.



To use the metrics available in tools:

>>> from MCML import tools as tl

#Pairwise distances between centroids of cells in each label
>>> cDists = tl.getCentroidDists(mat, np.array(cellTypes)) 
>>> len(cDists)
784

#Avg pairwise distances between cells of *both* sexes, for each cell type
>>> interDists = tl.getInterVar(mat, np.array(cellTypes), np.array(sexLabels))  
>>> len(interDists)
27

#Avg pairwise distances between cells of the *same* sex, for each cell type
>>> intraDists = tl.getIntraVar(mat, np.array(cellTypes), np.array(sexLabels)) 
>>> len(intraDists)
53

#Fraction of neighbors for each cell with same label as cell itself (also returns which labels neighbors have)
>>> neighbor_fracs, which_labels = tl.frac_unique_neighbors(mat, np.array(cellTypes), metric = 1,neighbors = 30)

#Get nearest neighbors for any embedding
>>> orig_neigh = tl.getNeighbors(mat, n_neigh = 15, p=1)
>>> latent_neigh = tl.getNeighbors(latentMCML, n_neigh = 15, p=1)

#Get Jaccard distance between latent and ambient nearest neighbors
>>> jac_dists = tl.getJaccard(orig_neigh, latent_neigh)
>>>len(jac_dists)
3850



To see further details of all inputs and outputs for all functions use:

>>> help(MCML)
>>> help(bMCML)
>>> help(tl)

License

MCML is licensed under the terms of the BSD License (see the file LICENSE).

Owner
Pachter Lab
Pachter Lab
Flask app to predict daily radiation from the time series of Solcast from Islamabad, Pakistan

Solar-radiation-ISB-MLOps - Flask app to predict daily radiation from the time series of Solcast from Islamabad, Pakistan.

Abid Ali Awan 1 Dec 31, 2021
moDel Agnostic Language for Exploration and eXplanation

moDel Agnostic Language for Exploration and eXplanation Overview Unverified black box model is the path to the failure. Opaqueness leads to distrust.

Model Oriented 1.2k Jan 04, 2023
A library of extension and helper modules for Python's data analysis and machine learning libraries.

Mlxtend (machine learning extensions) is a Python library of useful tools for the day-to-day data science tasks. Sebastian Raschka 2014-2021 Links Doc

Sebastian Raschka 4.2k Dec 29, 2022
#30DaysOfStreamlit is a 30-day social challenge for you to build and deploy Streamlit apps.

30 Days Of Streamlit 🎈 This is the official repo of #30DaysOfStreamlit — a 30-day social challenge for you to learn, build and deploy Streamlit apps.

Streamlit 53 Jan 02, 2023
Azure MLOps (v2) solution accelerators.

Azure MLOps (v2) solution accelerator Welcome to the MLOps (v2) solution accelerator repository! This project is intended to serve as the starting poi

Microsoft Azure 233 Jan 01, 2023
GRaNDPapA: Generator of Rad Names from Decent Paper Acronyms

Generator of Rad Names from Decent Paper Acronyms

264 Nov 08, 2022
Iterative stochastic gradient descent (SGD) linear regressor with regularization

SGD-Linear-Regressor Iterative stochastic gradient descent (SGD) linear regressor with regularization Dataset: Kaggle “Graduate Admission 2” https://w

Zechen Ma 1 Oct 29, 2021
Evaluate on three different ML model for feature selection using Breast cancer data.

Anomaly-detection-Feature-Selection Evaluate on three different ML model for feature selection using Breast cancer data. ML models: SVM, KNN and MLP.

Tarek idrees 1 Mar 17, 2022
LibTraffic is a unified, flexible and comprehensive traffic prediction library based on PyTorch

LibTraffic is a unified, flexible and comprehensive traffic prediction library, which provides researchers with a credibly experimental tool and a convenient development framework. Our library is imp

432 Jan 05, 2023
Conducted ANOVA and Logistic regression analysis using matplot library to visualize the result.

Intro-to-Data-Science Conducted ANOVA and Logistic regression analysis. Project ANOVA The main aim of this project is to perform One-Way ANOVA analysi

Chris Yuan 1 Feb 06, 2022
Lightweight Machine Learning Experiment Logging 📖

Simple logging of statistics, model checkpoints, plots and other objects for your Machine Learning Experiments (MLE). Furthermore, the MLELogger comes with smooth multi-seed result aggregation and co

Robert Lange 65 Dec 08, 2022
InfiniteBoost: building infinite ensembles with gradient descent

InfiniteBoost Code for a paper InfiniteBoost: building infinite ensembles with gradient descent (arXiv:1706.01109). A. Rogozhnikov, T. Likhomanenko De

Alex Rogozhnikov 183 Jan 03, 2023
BentoML is a flexible, high-performance framework for serving, managing, and deploying machine learning models.

Model Serving Made Easy BentoML is a flexible, high-performance framework for serving, managing, and deploying machine learning models. Supports multi

BentoML 4.4k Jan 04, 2023
Retrieve annotated intron sequences and classify them as minor (U12-type) or major (U2-type)

(intron I nterrogator and C lassifier) intronIC is a program that can be used to classify intron sequences as minor (U12-type) or major (U2-type), usi

Graham Larue 4 Jul 26, 2022
pywFM is a Python wrapper for Steffen Rendle's factorization machines library libFM

pywFM pywFM is a Python wrapper for Steffen Rendle's libFM. libFM is a Factorization Machine library: Factorization machines (FM) are a generic approa

João Ferreira Loff 251 Sep 23, 2022
Decision Tree Regression algorithm implemented on Python from scratch.

Decision_Tree_Regression I implemented the decision tree regression algorithm on Python. Unlike regular linear regression, this algorithm is used when

1 Dec 22, 2021
Apache Spark & Python (pySpark) tutorials for Big Data Analysis and Machine Learning as IPython / Jupyter notebooks

Spark Python Notebooks This is a collection of IPython notebook/Jupyter notebooks intended to train the reader on different Apache Spark concepts, fro

Jose A Dianes 1.5k Jan 02, 2023
BioPy is a collection (in-progress) of biologically-inspired algorithms written in Python

BioPy is a collection (in-progress) of biologically-inspired algorithms written in Python. Some of the algorithms included are mor

Jared M. Smith 40 Aug 26, 2022
A machine learning web application for binary classification using streamlit

Machine Learning web App This is a machine learning web application for binary classification using streamlit options this application contains 3 clas

abdelhak mokri 1 Dec 20, 2021
Adversarial Framework for (non-) Parametric Image Stylisation Mosaics

Fully Adversarial Mosaics (FAMOS) Pytorch implementation of the paper "Copy the Old or Paint Anew? An Adversarial Framework for (non-) Parametric Imag

Zalando Research 120 Dec 24, 2022