CLOCs: Camera-LiDAR Object Candidates Fusion for 3D Object Detection

Related tags

Deep LearningCLOCs
Overview

CLOCs: Camera-LiDAR Object Candidates Fusion for 3D Object Detection

CLOCs is a novel Camera-LiDAR Object Candidates fusion network. It provides a low-complexity multi-modal fusion framework that improves the performance of single-modality detectors. CLOCs operates on the combined output candidates of any 3D and any 2D detector, and is trained to produce more accurate 3D and 2D detection results.

Environment

Tested on python3.6, pytorch 1.1.0, Ubuntu 16.04/18.04.

Performance on KITTI validation set (3712 training, 3769 validation)

CLOCs_SecCas (SECOND+Cascade-RCNN) VS SECOND:

new 40 recall points
Car:      [email protected]       [email protected]   [email protected]
bev:  AP: 96.51 / 95.61, 92.37 / 89.54, 89.41 / 86.96
3d:   AP: 92.74 / 90.97, 82.90 / 79.94, 77.75 / 77.09
old 11 recall points
Car:      [email protected]       [email protected]   [email protected]
bev:  AP: 90.52 / 90.36, 89.29 / 88.10, 87.84 / 86.80
3d:   AP: 89.49 / 88.31, 79.31 / 77.99, 77.36 / 76.52

Install

The code is developed based on SECOND-1.5, please follow the SECOND-1.5 to setup the environment, the dependences for SECOND-1.5 are needed.

pip install shapely fire pybind11 tensorboardX protobuf scikit-image numba pillow

Follow the instructions to install spconv v1.0 (commit 8da6f96). Although CLOCs fusion does not need spconv, but SECOND codebase expects it to be correctly configured.

Then adding the CLOCs directory to your PYTHONPATH, you could add the following line (change '/dir/to/your/CLOCs/' according to your CLOCs directory) in your .bashrc under home directory.

export PYTHONPATH=$PYTHONPATH:'/dir/to/your/CLOCs/'

Prepare dataset (KITTI)

Download KITTI dataset and organize the files as follows:

└── KITTI_DATASET_ROOT
       ├── training    <-- 7481 train data
       |   ├── image_2 <-- for visualization
       |   ├── calib
       |   ├── label_2
       |   ├── velodyne
       |   └── velodyne_reduced <-- empty directory
       └── testing     <-- 7580 test data
       |   ├── image_2 <-- for visualization
       |   ├── calib
       |   ├── velodyne
       |   └── velodyne_reduced <-- empty directory
       └── kitti_dbinfos_train.pkl
       ├── kitti_infos_train.pkl
       ├── kitti_infos_test.pkl
       ├── kitti_infos_val.pkl
       └── kitti_infos_trainval.pkl

Next, you could follow the SECOND-1.5 instructions to create kitti infos, reduced point cloud and groundtruth-database infos, or just download these files from here and put them in the correct directories as shown above.

Fusion of SECOND and Cascade-RCNN

Preparation

CLOCs operates on the combined output of a 3D detector and a 2D detector. For this example, we use SECOND as the 3D detector, Cascade-RCNN as the 2D detector.

  1. For this example, we use detections with sigmoid scores, you could download the Cascade-RCNN detections for the KITTI train and validations set from here file name:'cascade_rcnn_sigmoid_data', or you could run the 2D detector by your self and save the results for the fusion. You could also use your own 2D detector to generate these 2D detections and save them in KITTI format for fusion.

  2. Then download the pretrained SECOND models from here file name: 'second_model.zip', create an empty directory named model_dir under your CLOCs root directory and unzip the files to model_dir. Your CLOCs directory should look like this:

└── CLOCs
       ├── d2_detection_data    <-- 2D detection candidates data
       ├── model_dir       <-- SECOND pretrained weights extracted from 'second_model.zip' 
       ├── second 
       ├── torchplus 
       ├── README.md
  1. Then modify the config file carefully:
train_input_reader: {
  ...
  database_sampler {
    database_info_path: "/dir/to/your/kitti_dbinfos_train.pkl"
    ...
  }
  kitti_info_path: "/dir/to/your/kitti_infos_train.pkl"
  kitti_root_path: "/dir/to/your/KITTI_DATASET_ROOT"
}
...
train_config: {
  ...
  detection_2d_path: "/dir/to/2d_detection/data"
}
...
eval_input_reader: {
  ...
  kitti_info_path: "/dir/to/your/kitti_infos_val.pkl"
  kitti_root_path: "/dir/to/your/KITTI_DATASET_ROOT"
}

Train

python ./pytorch/train.py train --config_path=./configs/car.fhd.config --model_dir=/dir/to/your_model_dir

The trained models and related information will be saved in '/dir/to/your_model_dir'

Evaluation

python ./pytorch/train.py evaluate --config_path=./configs/car.fhd.config --model_dir=/dir/to/your/trained_model --measure_time=True --batch_size=1

For example if you want to test the pretrained model downloaded from here file name: 'CLOCs_SecCas_pretrained.zip', unzip it, then you could run:

python ./pytorch/train.py evaluate --config_path=./configs/car.fhd.config --model_dir=/dir/to/your/CLOCs_SecCas_pretrained --measure_time=True --batch_size=1

If you want to export KITTI format label files, add pickle_result=False at the end of the above commamd.

Fusion of other 3D and 2D detectors

Step 1: Prepare the 2D detection candidates, run your 2D detector and save the results in KITTI format. It is recommended to run inference with NMS score threshold equals to 0 (no score thresholding), but if you don't know how to setup this, it is also fine for CLOCs.

Step 2: Prepare the 3D detection candidates, run your 3D detector and save the results in the format that SECOND could read, including a matrix with shape of N by 7 that contains the N 3D bounding boxes, and a N-element vector for the 3D confidence scores. 7 parameters correspond to the representation of a 3D bounding box. Be careful with the order and coordinate of the 7 parameters, if the parameters are in LiDAR coordinate, the order should be x, y, z, width, length, height, heading; if the parameters are in camera coordinate, the orderr should be x, y, z, lenght, height, width, heading. The details of the transformation functions can be found in file './second/pytorch/core/box_torch_ops.py'.

Step 3: Since the number of detection candidates are different for different 2D/3D detectors, you need to modify the corresponding parameters in the CLOCs code. Then train the CLOCs fusion. For example, there are 70400 (200x176x2) detection candidates in each frame from SECOND with batch size equals to 1. It is a very large number because SECOND is a one-stage detector, for other multi-stage detectors, you could just take the detection candidates before the final NMS function, that would reduce the number of detection candidates to hundreds or thousands.

Step 4: The output of CLOCs are fused confidence scores for all the 3D detection candidates, so you need to replace the old confidence scores (from your 3D detector) with the new fused confidence scores from CLOCs for post processing and evaluation. Then these 3D detection candidates with the corresponding CLOCs fused scores are treated as the input for your 3D detector post processing functions to generate final predictions for evaluation.

Citation

If you find this work useful in your research, please consider citing:

@article{pang2020clocs,
  title={CLOCs: Camera-LiDAR Object Candidates Fusion for 3D Object Detection},
  author={Pang, Su and Morris, Daniel and Radha, Hayder},
  booktitle={2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)},
  year={2020}
  organization={IEEE}
}

Acknowledgement

Our code are mainly based on SECOND, thanks for their excellent work!

Owner
Su Pang
PhD working in autonomous vehicles
Su Pang
Forecasting for knowable future events using Bayesian informative priors (forecasting with judgmental-adjustment).

What is judgyprophet? judgyprophet is a Bayesian forecasting algorithm based on Prophet, that enables forecasting while using information known by the

AstraZeneca 56 Oct 26, 2022
use tensorflow 2.0 to tell a dog and cat from a specified picture

dog_or_cat use tensorflow 2.0 to tell a dog and cat from a specified picture This is one of the classic experiments for the introduction of deep learn

你这个代码我看不懂 1 Oct 22, 2021
Exploration of some patients clinical variables.

Answer_ALS_clinical_data Exploration of some patients clinical variables. All the clinical / metadata data is available here: https://data.answerals.o

1 Jan 20, 2022
Deep Learning Package based on TensorFlow

White-Box-Layer is a Python module for deep learning built on top of TensorFlow and is distributed under the MIT license. The project was started in M

YeongHyeon Park 7 Dec 27, 2021
A curated list of awesome Machine Learning frameworks, libraries and software.

Awesome Machine Learning A curated list of awesome machine learning frameworks, libraries and software (by language). Inspired by awesome-php. If you

Joseph Misiti 57.1k Jan 03, 2023
Semi-supervised Stance Detection of Tweets Via Distant Network Supervision

SANDS This is an annonymous repository containing code and data necessary to reproduce the results published in "Semi-supervised Stance Detection of T

2 Sep 22, 2022
Official source code to CVPR'20 paper, "When2com: Multi-Agent Perception via Communication Graph Grouping"

When2com: Multi-Agent Perception via Communication Graph Grouping This is the PyTorch implementation of our paper: When2com: Multi-Agent Perception vi

34 Nov 09, 2022
Making a music video with Wav2CLIP and VQGAN-CLIP

music2video Overview A repo for making a music video with Wav2CLIP and VQGAN-CLIP. The base code was derived from VQGAN-CLIP The CLIP embedding for au

Joel Jang | 장요엘 163 Dec 26, 2022
Very deep VAEs in JAX/Flax

Very Deep VAEs in JAX/Flax Implementation of the experiments in the paper Very Deep VAEs Generalize Autoregressive Models and Can Outperform Them on I

Jamie Townsend 42 Dec 12, 2022
A simple python library for fast image generation of people who do not exist.

Random Face A simple python library for fast image generation of people who do not exist. For more details, please refer to the [paper](https://arxiv.

Sergei Belousov 170 Dec 15, 2022
PyTorch implementation for "Sharpness-aware Quantization for Deep Neural Networks".

Sharpness-aware Quantization for Deep Neural Networks Recent Update 2021.11.23: We release the source code of SAQ. Setup the environments Clone the re

Zhuang AI Group 30 Dec 19, 2022
[ACL 2022] LinkBERT: A Knowledgeable Language Model 😎 Pretrained with Document Links

LinkBERT: A Knowledgeable Language Model Pretrained with Document Links This repo provides the model, code & data of our paper: LinkBERT: Pretraining

Michihiro Yasunaga 264 Jan 01, 2023
Implemented fully documented Particle Swarm Optimization algorithm (basic model with few advanced features) using Python programming language

Implemented fully documented Particle Swarm Optimization (PSO) algorithm in Python which includes a basic model along with few advanced features such as updating inertia weight, cognitive, social lea

9 Nov 29, 2022
LightNet++: Boosted Light-weighted Networks for Real-time Semantic Segmentation

LightNet++ !!!New Repo.!!! ⇒ EfficientNet.PyTorch: Concise, Modular, Human-friendly PyTorch implementation of EfficientNet with Pre-trained Weights !!

linksense 237 Jan 05, 2023
A Game-Theoretic Perspective on Risk-Sensitive Reinforcement Learning

Officile code repository for "A Game-Theoretic Perspective on Risk-Sensitive Reinforcement Learning"

Mathieu Godbout 1 Nov 19, 2021
Script that attempts to force M1 macs into RGB mode when used with monitors that are defaulting to YPbPr.

fix_m1_rgb Script that attempts to force M1 macs into RGB mode when used with monitors that are defaulting to YPbPr. No warranty provided for using th

Kevin Gao 116 Jan 01, 2023
Seeing All the Angles: Learning Multiview Manipulation Policies for Contact-Rich Tasks from Demonstrations

Seeing All the Angles: Learning Multiview Manipulation Policies for Contact-Rich Tasks from Demonstrations Trevor Ablett, Daniel (Yifan) Zhai, Jonatha

STARS Laboratory 3 Feb 01, 2022
Using modified BiSeNet for face parsing in PyTorch

face-parsing.PyTorch Contents Training Demo References Training Prepare training data: -- download CelebAMask-HQ dataset -- change file path in the pr

zll 1.6k Jan 08, 2023
Person Re-identification

Person Re-identification Final project of Computer Vision Table of content Person Re-identification Table of content Students: Proposed method Dataset

Nguyễn Hoàng Quân 4 Jun 17, 2021
Neural Style and MSG-Net

PyTorch-Style-Transfer This repo provides PyTorch Implementation of MSG-Net (ours) and Neural Style (Gatys et al. CVPR 2016), which has been included

Hang Zhang 904 Dec 21, 2022