Transformer Based Korean Sentence Spacing Corrector

Overview

TKOrrector

Transformer Based Korean Sentence Spacing Corrector

Architecture

License Summary

This solution is made available under Apache 2 license. See the LICENSE file.

Minimum Requirements

It is recommended that you run the Trainig on a machine with Nvidia GPU with drivers and CUDA installed.

Prerequisites

  1. Clone this repo and cd into it.

  2. Install dependencies. Preferrably in a virtual env.

    a. Optional: Create new virtual env. Conda example below.
    conda create --name TKOrrector python=3.9 -y
    conda activate TKOrrector

    b. Install PyTorch with CUDA conda install pytorch torchvision torchaudio cudatoolkit=11.1 -c pytorch -c nvidia

    or

    b. Install PyTorch without GPU conda install pytorch torchvision torchaudio cpuonly -c pytorch

    c. Install dependencies
    pip install -r requirements.txt

Run

You can run the pretrained model without the need to Train.

Download the pretrained model and extract into the current directory (tar zxvf TKOrrector.tar.gz)

sh demo.sh

Example demo run screen and results.
Example Demo Run

Train

Download the Corpus

  1. Go to NIKL Corpus Download Site and apply for a new license.

    The cost is free but you need to sign an agreement. It is recommended that you upload the corpus file on an object storage such as GCS to quickly download on additional machines such as GCP GCE to use a VM with GPU for training as needed without huge upfront cost. Edit src/download_corpus.sh to download the Corpus file and expand it into the designated directory.

    cd src
    sh download_corpus.sh

Run the data prep stage

Change lines 51, 53 in prepare_corpus_with_tokenizer.sh to increase the training dataset size.  
The second argument is the number of files to include into the training set + 1.  
`get_corpus "../data/$CORPUS1/*" 10`  
Above command would include 9 files (manual pdf file is skipped) from the Newspaper corpus.
  1. Run the data prep command.

    sh prepare_corpus_with_tokenizer.sh

Run the training stage

  1. Run the training command.

    sh train.sh

Run the Evaluation

  1. After the training is done, evaluation of the model with test dataset can be performed with batch translations by running the command below.

    sh calculate_metrics.sh

Detailed Dataflow Diagram

Detailed Architecture

Owner
Paul Hyung Yuel Kim
Paul Hyung Yuel Kim
Framework for fine-tuning pretrained transformers for Named-Entity Recognition (NER) tasks

NERDA Not only is NERDA a mesmerizing muppet-like character. NERDA is also a python package, that offers a slick easy-to-use interface for fine-tuning

Ekstra Bladet 141 Dec 30, 2022
Training open neural machine translation models

Train Opus-MT models This package includes scripts for training NMT models using MarianNMT and OPUS data for OPUS-MT. More details are given in the Ma

Language Technology at the University of Helsinki 167 Jan 03, 2023
The (extremely) naive sentiment classification function based on NBSVM trained on wisesight_sentiment

thai_sentiment The naive sentiment classification function based on NBSVM trained on wisesight_sentiment วิธีติดตั้ง pip install thai_sentiment==0.1.3

Charin 7 Dec 08, 2022
Natural Language Processing at EDHEC, 2022

Natural Language Processing Here you will find the teaching materials for the "Natural Language Processing" course at EDHEC Business School, 2022 What

1 Feb 04, 2022
Share constant definitions between programming languages and make your constants constant again

Introduction Reconstant lets you share constant and enum definitions between programming languages. Constants are defined in a yaml file and converted

Natan Yellin 47 Sep 10, 2022
Facebook AI Research Sequence-to-Sequence Toolkit written in Python.

Fairseq(-py) is a sequence modeling toolkit that allows researchers and developers to train custom models for translation, summarization, language mod

20.5k Jan 08, 2023
Explore different way to mix speech model(wav2vec2, hubert) and nlp model(BART,T5,GPT) together

SpeechMix Explore different way to mix speech model(wav2vec2, hubert) and nlp model(BART,T5,GPT) together. Introduction For the same input: from datas

Eric Lam 31 Nov 07, 2022
TensorFlow code and pre-trained models for BERT

BERT ***** New March 11th, 2020: Smaller BERT Models ***** This is a release of 24 smaller BERT models (English only, uncased, trained with WordPiece

Google Research 32.9k Jan 08, 2023
COVID-19 Related NLP Papers

COVID-19 outbreak has become a global pandemic. NLP researchers are fighting the epidemic in their own way.

xcfeng 28 Oct 30, 2022
Source code for AAAI20 "Generating Persona Consistent Dialogues by Exploiting Natural Language Inference".

Generating Persona Consistent Dialogues by Exploiting Natural Language Inference Source code for RCDG model in AAAI20 Generating Persona Consistent Di

16 Oct 08, 2022
Open source code for AlphaFold.

AlphaFold This package provides an implementation of the inference pipeline of AlphaFold v2.0. This is a completely new model that was entered in CASP

DeepMind 9.7k Jan 02, 2023
Data and code to support "Applied Natural Language Processing" (INFO 256, Fall 2021, UC Berkeley)

anlp21 Course materials for "Applied Natural Language Processing" (INFO 256, Fall 2021, UC Berkeley) Syllabus: http://people.ischool.berkeley.edu/~dba

David Bamman 48 Dec 06, 2022
official ( API ) for the zAmericanEnglish app in [ Google play ] and [ App store ]

official ( API ) for the zAmericanEnglish app in [ Google play ] and [ App store ]

Plugin 3 Jan 12, 2022
Machine learning models from Singapore's NLP research community

SG-NLP Machine learning models from Singapore's natural language processing (NLP) research community. sgnlp is a Python package that allows you to eas

AI Singapore | AI Makerspace 21 Dec 17, 2022
Production First and Production Ready End-to-End Keyword Spotting Toolkit

Production First and Production Ready End-to-End Keyword Spotting Toolkit

223 Jan 02, 2023
Artificial Conversational Entity for queries in Eulogio "Amang" Rodriguez Institute of Science and Technology (EARIST)

🤖 Coeus - EARIST A.C.E 💬 Coeus is an Artificial Conversational Entity for queries in Eulogio "Amang" Rodriguez Institute of Science and Technology,

Dids Irwyn Reyes 3 Oct 14, 2022
Adversarial Examples for Extreme Multilabel Text Classification

Adversarial Examples for Extreme Multilabel Text Classification The code is adapted from the source codes of BERT-ATTACK [1], APLC_XLNet [2], and Atte

1 May 14, 2022
The proliferation of disinformation across social media has led the application of deep learning techniques to detect fake news.

Fake News Detection Overview The proliferation of disinformation across social media has led the application of deep learning techniques to detect fak

Kushal Shingote 1 Feb 08, 2022
Include MelGAN, HifiGAN and Multiband-HifiGAN, maybe NHV in the future.

Fast (GAN Based Neural) Vocoder Chinese README Todo Submit demo Support NHV Discription Include MelGAN, HifiGAN and Multiband-HifiGAN, maybe include N

Zhengxi Liu (刘正曦) 134 Dec 16, 2022