healthy and lesion models for learning based on the joint estimation of stochasticity and volatility

Overview

health-lesion-stovol

healthy and lesion models for learning based on the joint estimation of stochasticity and volatility

Reference

please cite this paper if you use this code: Piray P and Daw ND, 'A model for learning based on the joint estimation of stochasticity and volatility', 2021, Nature Communications.

Description of the models

This work addresses the problem of learning in noisy environments, in which the agent must draw inferences (e.g., about true reward rates) from observations (individual reward amounts) that are corrupted by two distinct sources of noise: process noise or volatility and observation noise or stochasticity. Volatility captures the speed by which the true value being estimated changes from trial to trial (modeled as Gaussian diffusion); stochasticity describes additional measurement noise in the observation of each outcome around its true value (modeled as Gaussian noise on each trial). The celebrated Kalman filter makes inference based on known value for both stochasticity and volatility, in which volatility and stochasticity have opposite effects on the learning rate (i.e. Kalman gain): whereas volatility increases the learning rate, stochasticity decreases the learning rate.

The learning models implemented here generalize the Kalman filter by also learning both stochasticity and volatility based on observations. An important point is that inferences about volatility and stochasticity are mutually interdependent. But the details of the interdependence are themselves informative. From the learner’s perspective, a challenging problem is to distinguish volatility from stochasticity when both are unknown, because both of them increase the noisiness of observations. Disentangling their respective contributions requires trading off two opposing explanations for the pattern of observations, a process known in Bayesian probability theory as explaining away. This insight results in two lesion models: a stochasticity lesion model that tends to misidentify stochasticity as volatility and inappropriately increases learning rates; and a volatility lesion model that tends to misidentify volatility as stochasticity and inappropriately decreases learning rates.

Description of the code

learning_models.py contains two classes of learning models:

  1. LearningModel that includes the healthy model and two lesion models (stochasticity lesion and volatility lesion models)
  2. LearningModelGaussian is similar to LearningModel with the Gaussian generative processes for stochasticity and volatility diffusion.

Inference in both classes is based on a combination of particle filter and Kalman filter. Given particles for stochasticity and volatility, the Kalman filter updates its estimation of the mean and variance of the state (e.g. reward rate). The main results shown in the reference paper (see below) is very similar for both classes of generative process. The particle filter has been implemented in the particle_filter.py

sim_example.py simulates the healthy model in a 2x2 factorial design (with two different true values for both true stochasticity and volatility). The model does not know about the true values and should learn them from observations. Initial values for both stochasticity and volatility are assumed to be the mean of their corresponding true values (and so not helpful for dissociation). This is akin to Figure 2 of the reference paper.

sim_lesion_example.py also simulates the lesions models in the 2x2 factorial design described above. This is akin to Figure 3 of the reference paper.

Dependencies:

numpy (required for computations in particle_filter.py and learning_models.py) matplotlib (required for visualization in sim_example and sim_lesion_example) seaborn (required for visualization in sim_example and sim_lesion_example) pandas (required for visualization in sim_example and sim_lesion_example)

Other languages

The MATLAB implementation of the model is also available: https://github.com/payampiray/stochasticity_volatility_learning

Author

Payam Piray (ppiray [at] princeton.edu)

We have a dataset of user performances. The project is to develop a machine learning model that will predict the salaries of baseball players.

Salary-Prediction-with-Machine-Learning 1. Business Problem Can a machine learning project be implemented to estimate the salaries of baseball players

Ayşe Nur Türkaslan 9 Oct 14, 2022
A collection of Scikit-Learn compatible time series transformers and tools.

tsfeast A collection of Scikit-Learn compatible time series transformers and tools. Installation Create a virtual environment and install: From PyPi p

Chris Santiago 0 Mar 30, 2022
customer churn prediction prevention in telecom industry using machine learning and survival analysis

Telco Customer Churn Prediction - Plotly Dash Application Description This dash application allows you to predict telco customer churn using machine l

Benaissa Mohamed Fayçal 3 Nov 20, 2021
High performance Python GLMs with all the features!

High performance Python GLMs with all the features!

QuantCo 200 Dec 14, 2022
Kaggler is a Python package for lightweight online machine learning algorithms and utility functions for ETL and data analysis.

Kaggler is a Python package for lightweight online machine learning algorithms and utility functions for ETL and data analysis. It is distributed under the MIT License.

Jeong-Yoon Lee 720 Dec 25, 2022
Simplify stop motion animation with machine learning.

Simplify stop motion animation with machine learning.

Nick Bild 25 Sep 15, 2022
A machine learning toolkit dedicated to time-series data

tslearn The machine learning toolkit for time series analysis in Python Section Description Installation Installing the dependencies and tslearn Getti

2.3k Dec 29, 2022
Getting Profit and Loss Make Easy From Binance

Getting Profit and Loss Make Easy From Binance I have been in Binance Automated Trading for some time and have generated a lot of transaction records,

17 Dec 21, 2022
scikit-multimodallearn is a Python package implementing algorithms multimodal data.

scikit-multimodallearn is a Python package implementing algorithms multimodal data. It is compatible with scikit-learn, a popul

12 Jun 29, 2022
Educational python for Neural Networks, written in pure Python/NumPy.

Educational python for Neural Networks, written in pure Python/NumPy.

127 Oct 27, 2022
Crunchdao - Python API for the Crunchdao machine learning tournament

Python API for the Crunchdao machine learning tournament Interact with the Crunc

3 Jan 19, 2022
🎛 Distributed machine learning made simple.

🎛 lazycluster Distributed machine learning made simple. Use your preferred distributed ML framework like a lazy engineer. Getting Started • Highlight

Machine Learning Tooling 44 Nov 27, 2022
A Collection of Conference & School Notes in Machine Learning 🦄📝🎉

Machine Learning Conference & Summer School Notes. 🦄📝🎉

558 Dec 28, 2022
A toolkit for geo ML data processing and model evaluation (fork of solaris)

An open source ML toolkit for overhead imagery. This is a beta version of lunular which may continue to develop. Please report any bugs through issues

Ryan Avery 4 Nov 04, 2021
Reggy - Regressions with arbitrarily complex regularization terms

reggy Regressions with arbitrarily complex regularization terms. Currently suppo

Kim 1 Jan 20, 2022
scikit-learn: machine learning in Python

scikit-learn is a Python module for machine learning built on top of SciPy and is distributed under the 3-Clause BSD license. The project was started

neurodata 3 Dec 16, 2022
Machine learning model evaluation made easy: plots, tables, HTML reports, experiment tracking and Jupyter notebook analysis.

sklearn-evaluation Machine learning model evaluation made easy: plots, tables, HTML reports, experiment tracking, and Jupyter notebook analysis. Suppo

Eduardo Blancas 354 Dec 31, 2022
slim-python is a package to learn customized scoring systems for decision-making problems.

slim-python is a package to learn customized scoring systems for decision-making problems. These are simple decision aids that let users make yes-no p

Berk Ustun 37 Nov 02, 2022
healthy and lesion models for learning based on the joint estimation of stochasticity and volatility

health-lesion-stovol healthy and lesion models for learning based on the joint estimation of stochasticity and volatility Reference please cite this p

5 Nov 01, 2022