Persian Bert For Long-Range Sequences

Overview

ParsBigBird: Persian Bert For Long-Range Sequences

The Bert and ParsBert algorithms can handle texts with token lengths of up to 512, however, many tasks such as summarizing and answering questions require longer texts. In our work, we have trained the BigBird model for the Persian language to process texts up to 4096 in the Farsi (Persian) language using sparse attention.

big bird's attention block Big bird's attention block from BigBird's paper

Evaluation: 🌡️

We have evaluated the model on three tasks with different sequence lengths

Name Params SnappFood (F1) Digikala Magazine(F1) PersianQA (F1)
distil-bigbird-fa-zwnj 78M 85.43% 94.05% 73.34%
bert-base-fa 118M 87.98% 93.65% 70.06%
  • Despite being as big as distill-bert, the model performs equally well as ParsBert and is much better on PersianQA which requires much more context
  • This evaluation was based on max_lentgh=2048 (It can be changed up to 4096)

How to use

As Contextualized Word Embedding

from transformers import BigBirdModel, AutoTokenizer

MODEL_NAME = "SajjadAyoubi/distil-bigbird-fa-zwnj"
# by default its in `block_sparse` block_size=32
model = BigBirdModel.from_pretrained(MODEL_NAME, block_size=32)
# you can use full attention like the following: use this when input isn't longer than 512
model = BigBirdModel.from_pretrained(MODEL_NAME, attention_type="original_full")

text = "😃 امیدوارم مدل بدردبخوری باشه چون خیلی طول کشید تا ترین بشه"
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
tokens = tokenizer(text, return_tensors='pt')
output = model(**tokens) # contextualized embedding

As Fill Blank

from transformers import pipeline

MODEL_NAME = 'SajjadAyoubi/distil-bigbird-fa-zwnj'
fill = pipeline('fill-mask', model=MODEL_NAME, tokenizer=MODEL_NAME)
results = fill('تهران پایتخت [MASK] است.')
print(results[0]['token_str'])
>>> 'ایران'

Pretraining details: 🔭

This model was pretrained using a masked language model (MLM) objective on the Persian section of the Oscar dataset. Following the original BERT training, 15% of tokens were masked. This was first described in this paper and released in this repository. Documents longer than 4096 were split into multiple documents, while documents much smaller than 4096 were merged using the [SEP] token. Model is warm started from distilbert-fa’s checkpoint.

  • For more details, you can take a look at config.json at the model card in 🤗 Model Hub

Fine Tuning Recommendations: 🐤

Due to the model's memory requirements, gradient_checkpointing and gradient_accumulation should be used to maintain a reasonable batch size. Considering this model isn't really big, it's a good idea to first fine-tune it on your dataset using Masked LM objective (also called intermediate fine-tuning) before implementing the main task. In block_sparse mode, it doesn't matter how many tokens are input. It just attends to 256 tokens. Furthermore, original_full should be used up to 512 sequence lengths (instead of block sparse).

Fine Tuning Examples 👷‍♂️ 👷‍♀️

Dataset Fine Tuning Example
Digikala Magazine Text Classification

Contact us: 🤝

If you have a technical question regarding the model, pretraining, code or publication, please create an issue in the repository. This is the fastest way to reach us.

Citation: ↩️

we didn't publish any papers on the work. However, if you did, please cite us properly with an entry like one below.

@misc{ParsBigBird,
  author          = {Ayoubi, Sajjad},
  title           = {ParsBigBird: Persian Bert For Long-Range Sequences},
  year            = 2021,
  publisher       = {GitHub},
  journal         = {GitHub repository},
  howpublished    = {\url{https://github.com/SajjjadAyobi/ParsBigBird}},
}
Owner
Sajjad Ayoubi
Wants to be a Machine Learning Engineer
Sajjad Ayoubi
Takes a string and puts it through different languages in Google Translate a requested amount of times, returning nonsense.

PythonTextObfuscator Takes a string and puts it through different languages in Google Translate a requested amount of times, returning nonsense. Requi

2 Aug 29, 2022
Repository for fine-tuning Transformers 🤗 based seq2seq speech models in JAX/Flax.

Seq2Seq Speech in JAX A JAX/Flax repository for combining a pre-trained speech encoder model (e.g. Wav2Vec2, HuBERT, WavLM) with a pre-trained text de

Sanchit Gandhi 21 Dec 14, 2022
A cross platform OCR Library based on PaddleOCR & OnnxRuntime

A cross platform OCR Library based on PaddleOCR & OnnxRuntime

RapidOCR Team 767 Jan 09, 2023
Trains an OpenNMT PyTorch model and SentencePiece tokenizer.

Trains an OpenNMT PyTorch model and SentencePiece tokenizer. Designed for use with Argos Translate and LibreTranslate.

Argos Open Tech 61 Dec 13, 2022
一个基于Nonebot2和go-cqhttp的娱乐性qq机器人

Takker - 一个普通的QQ机器人 此项目为基于 Nonebot2 和 go-cqhttp 开发,以 Sqlite 作为数据库的QQ群娱乐机器人 关于 纯兴趣开发,部分功能借鉴了大佬们的代码,作为Q群的娱乐+功能性Bot 声明 此项目仅用于学习交流,请勿用于非法用途 这是开发者的第一个Pytho

风屿 79 Dec 29, 2022
An implementation of the Pay Attention when Required transformer

Pay Attention when Required (PAR) Transformer-XL An implementation of the Pay Attention when Required transformer from the paper: https://arxiv.org/pd

7 Aug 11, 2022
Mapping a variable-length sentence to a fixed-length vector using BERT model

Are you looking for X-as-service? Try the Cloud-Native Neural Search Framework for Any Kind of Data bert-as-service Using BERT model as a sentence enc

Han Xiao 11.1k Jan 01, 2023
Multilingual text (NLP) processing toolkit

polyglot Polyglot is a natural language pipeline that supports massive multilingual applications. Free software: GPLv3 license Documentation: http://p

RAMI ALRFOU 2.1k Jan 07, 2023
Officile code repository for "A Game-Theoretic Perspective on Risk-Sensitive Reinforcement Learning"

CvarAdversarialRL Official code repository for "A Game-Theoretic Perspective on Risk-Sensitive Reinforcement Learning". Initial setup Create a virtual

Mathieu Godbout 1 Nov 19, 2021
CJK computer science terms comparison / 中日韓電腦科學術語對照 / 日中韓のコンピュータ科学の用語対照 / 한·중·일 전산학 용어 대조

CJK computer science terms comparison This repository contains the source code of the website. You can see the website from the following link: Englis

Hong Minhee (洪 民憙) 88 Dec 23, 2022
结巴中文分词

jieba “结巴”中文分词:做最好的 Python 中文分词组件 "Jieba" (Chinese for "to stutter") Chinese text segmentation: built to be the best Python Chinese word segmentation

Sun Junyi 29.8k Jan 02, 2023
Text Classification in Turkish Texts with Bert

You can watch the details of the project on my youtube channel Project Interface Project Second Interface Goal= Correctly guessing the classification

42 Dec 31, 2022
PyTorch source code of NAACL 2019 paper "An Embarrassingly Simple Approach for Transfer Learning from Pretrained Language Models"

This repository contains source code for NAACL 2019 paper "An Embarrassingly Simple Approach for Transfer Learning from Pretrained Language Models" (P

Alexandra Chronopoulou 89 Aug 12, 2022
Open-Source Toolkit for End-to-End Speech Recognition leveraging PyTorch-Lightning and Hydra.

OpenSpeech provides reference implementations of various ASR modeling papers and three languages recipe to perform tasks on automatic speech recogniti

Soohwan Kim 26 Dec 14, 2022
Code repository for "It's About Time: Analog clock Reading in the Wild"

it's about time Code repository for "It's About Time: Analog clock Reading in the Wild" Packages required: pytorch (used 1.9, any reasonable version s

52 Nov 10, 2022
Simple, hackable offline speech to text - using the VOSK-API.

Simple, hackable offline speech to text - using the VOSK-API.

Campbell Barton 844 Jan 07, 2023
An A-SOUL Text Generator Based on CPM-Distill.

ASOUL-Generator-Backend 本项目为 https://asoul.infedg.xyz/ 的后端。 模型为基于 CPM-Distill 的 transformers 转化版本 CPM-Generate-distill 训练而成。

infinityedge 46 Dec 11, 2022
FB ID CLONER WUTHOT CHECKPOINT, FACEBOOK ID CLONE FROM FILE

* MY SOCIAL MEDIA : Programming And Memes Want to contact Mr. Error ? CONTACT : [ema

Mr. Error 9 Jun 17, 2021
Exploring dimension-reduced embeddings

sleepwalk Exploring dimension-reduced embeddings This is the code repository. See here for the Sleepwalk web page. License and disclaimer This program

S. Anders's research group at ZMBH 91 Nov 29, 2022
BPEmb is a collection of pre-trained subword embeddings in 275 languages, based on Byte-Pair Encoding (BPE) and trained on Wikipedia.

BPEmb is a collection of pre-trained subword embeddings in 275 languages, based on Byte-Pair Encoding (BPE) and trained on Wikipedia. Its intended use is as input for neural models in natural languag

Benjamin Heinzerling 1.1k Jan 03, 2023