Code repository for EMNLP 2021 paper 'Adversarial Attacks on Knowledge Graph Embeddings via Instance Attribution Methods'

Overview

Adversarial Attacks on Knowledge Graph Embeddings
via Instance Attribution Methods

This is the code repository to accompany the EMNLP 2021 paper on adversarial attacks on KGE models.
For any questions or feedback, add an issue or email me at: [email protected]

Overview

The figure illustrates adversarial attacks against KGE models for fraud detection. The knowledge graph consists of two types of entities - Person and BankAccount. The missing target triple to predict is (Sam, allied_with, Joe). Original KGE model predicts this triple as True, i.e. assigns it a higher score relative to synthetic negative triples. But a malicious attacker uses the instance attribution methods to either (a) delete an adversarial triple or (b) add an adversarial triple. Now, the KGE model predicts the missing target triple as False.

The attacker uses the instance attribution methods to identify the training triples that are most influential for model's prediciton on the target triple. These influential triples are used as adversarial deletions. Using the influential triple, the attacker further selects adversarial additions by replacing one of the two entities of the influential triple with the most dissimilar entity in the embedding space. For example, if the attacker identifies that (Sam, deposits_to, Suspicious_Account) is the most influential triple for predicting (Sam, allied_with, Joe), then they can add (Sam, deposits_to, Non_Suspicious_Account) to reduce the influence of the influential triple.

Reproducing the results

Setup

  • python = 3.8.5
  • pytorch = 1.4.0
  • numpy = 1.19.1
  • jupyter = 1.0.0
  • pandas = 1.1.0
  • matplotlib = 3.2.2
  • scikit-learn = 0.23.2
  • seaborn = 0.11.0

Experiments reported in the paper were run in the conda environment attribution_attack.yml.

Steps

  • The codebase and the bash scripts used for experiments are in KGEAttack.
  • To preprocess the original dataset, use the bash script preprocess.sh.
  • For each model-dataset combination, there is a bash script to train the original model, generate attacks from baselines and proposed attacks; and train poisoned model. These scripts are named as model-dataset.sh.
  • The instructions in these scripts are grouped together under the echo statements which indicate what they do.
  • The commandline argument --reproduce-results uses the hyperparameters that were used for the experiments reported in the paper. These hyperparameter values can be inspected in the function set_hyperparams() in utils.py.
  • To reproduce the results, specific instructions from the bash scripts can be run on commandline or the full script can be run.
  • All experiments in the paper were run on a shared HPC cluster that had Nvidia RTX 2080ti, Tesla K40 and V100 GPUs.

References

Parts of this codebase are based on the code from following repositories

Citation

@inproceedings{bhardwaj-etal-2021-adversarial,
    title = "Adversarial Attacks on Knowledge Graph Embeddings via Instance Attribution Methods",
    author = "Bhardwaj, Peru  and
      Kelleher, John  and
      Costabello, Luca  and
      O{'}Sullivan, Declan",
    booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
    month = nov,
    year = "2021",
    address = "Online and Punta Cana, Dominican Republic",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.emnlp-main.648",
    pages = "8225--8239",
    }
Owner
Peru Bhardwaj
PhD Student, Trinity College Dublin, Ireland.
Peru Bhardwaj
MoveNetを用いたPythonでの姿勢推定のデモ

MoveNet-Python-Example MoveNetのPythonでの動作サンプルです。 ONNXに変換したモデルも同梱しています。変換自体を試したい方はMoveNet_tf2onnx.ipynbを使用ください。 2021/08/24時点でTensorFlow Hubで提供されている以下モデ

KazuhitoTakahashi 38 Dec 17, 2022
Final Project for the CS238: Decision Making Under Uncertainty course at Stanford University in Autumn '21.

Final Project for the CS238: Decision Making Under Uncertainty course at Stanford University in Autumn '21. We optimized wind turbine placement in a wind farm, subject to wake effects, using Q-learni

Manasi Sharma 2 Sep 27, 2022
Codes for AAAI22 paper "Learning to Solve Travelling Salesman Problem with Hardness-Adaptive Curriculum"

Paper For more details, please see our paper Learning to Solve Travelling Salesman Problem with Hardness-Adaptive Curriculum which has been accepted a

14 Sep 30, 2022
Meandering In Networks of Entities to Reach Verisimilar Answers

MINERVA Meandering In Networks of Entities to Reach Verisimilar Answers Code and models for the paper Go for a Walk and Arrive at the Answer - Reasoni

Shehzaad Dhuliawala 271 Dec 13, 2022
Discord Multi Tool that focuses on design and easy usage

Multi-Tool-v1.0 Discord Multi Tool that focuses on design and easy usage Delete webhook Block all friends Spam webhook Modify webhook Webhook info Tok

Lodi#0001 24 May 23, 2022
Implementing Vision Transformer (ViT) in PyTorch

Lightning-Hydra-Template A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥 Click on Use this template to initialize new re

2 Dec 24, 2021
Autonomous racing with the Anki Overdrive

Anki Autonomous Racing Autonomous racing with the Anki Overdrive. Using the Overdrive-Python API (https://github.com/xerodotc/overdrive-python) develo

3 Dec 11, 2022
Distributed Asynchronous Hyperparameter Optimization in Python

Hyperopt: Distributed Hyperparameter Optimization Hyperopt is a Python library for serial and parallel optimization over awkward search spaces, which

6.5k Jan 01, 2023
Unsupervised clustering of high content screen samples

Microscopium Unsupervised clustering and dataset exploration for high content screens. See microscopium in action Public dataset BBBC021 from the Broa

60 Dec 05, 2022
Tensorflow port of a full NetVLAD network

netvlad_tf The main intention of this repo is deployment of a full NetVLAD network, which was originally implemented in Matlab, in Python. We provide

Robotics and Perception Group 225 Nov 08, 2022
Realtime YOLO Monster Detection With Non Maximum Supression

Realtime-YOLO-Monster-Detection-With-Non-Maximum-Supression Table of Contents In

5 Oct 07, 2022
EMNLP'2021: SimCSE: Simple Contrastive Learning of Sentence Embeddings

SimCSE: Simple Contrastive Learning of Sentence Embeddings This repository contains the code and pre-trained models for our paper SimCSE: Simple Contr

Princeton Natural Language Processing 2.5k Dec 29, 2022
Official implementation for ICDAR 2021 paper "Handwritten Mathematical Expression Recognition with Bidirectionally Trained Transformer"

Handwritten Mathematical Expression Recognition with Bidirectionally Trained Transformer Description Convert offline handwritten mathematical expressi

Wenqi Zhao 87 Dec 27, 2022
Using Language Model to Bootstrap Human Activity Recognition Ambient Sensors Based in Smart Homes

Using Language Model to Bootstrap Human Activity Recognition Ambient Sensors Based in Smart Homes This repository is the official implementation of Us

Damien Bouchabou 0 Oct 18, 2021
Code to reproduce the results in "Visually Grounded Reasoning across Languages and Cultures", EMNLP 2021.

marvl-code [WIP] This is the implementation of the approaches described in the paper: Fangyu Liu*, Emanuele Bugliarello*, Edoardo M. Ponti, Siva Reddy

25 Nov 15, 2022
A colab notebook for training Stylegan2-ada on colab, transfer learning onto your own dataset.

Stylegan2-Ada-Google-Colab-Starter-Notebook A no thrills colab notebook for training Stylegan2-ada on colab. transfer learning onto your own dataset h

Harnick Khera 66 Dec 16, 2022
Real-Time Multi-Contact Model Predictive Control via ADMM

Here, you can find the code for the paper 'Real-Time Multi-Contact Model Predictive Control via ADMM'. Code is currently being cleared up and optimize

17 Dec 28, 2022
Keras implementations of Generative Adversarial Networks.

This repository has gone stale as I unfortunately do not have the time to maintain it anymore. If you would like to continue the development of it as

Erik Linder-Norén 8.9k Jan 04, 2023
Non-Vacuous Generalisation Bounds for Shallow Neural Networks

This package requires jax, tensorflow, and numpy. Either tensorflow or scikit-learn can be used for loading data. To run in a nix-shell with required

Felix Biggs 0 Feb 04, 2022
joint detection and semantic segmentation, based on ultralytics/yolov5,

Multi YOLO V5——Detection and Semantic Segmentation Overeview This is my undergraduate graduation project which based on ultralytics YOLO V5 tag v5.0.

477 Jan 06, 2023