Utility for Google Text-To-Speech batch audio files generator. Ideal for prompt files creation with Google voices for application in offline IVRs

Overview

Google Text-To-Speech Batch Prompt File Maker

forthebadge forthebadge

Are you in the need of IVR prompts, but you have no voice actors? Let Google talk your prompts like a pro! This repository contains a tool for generating Google Text-To-Speech audio files in batch. It is ideal for offline prompts creation with Google voices for application in IVRs

In order to use this repository, clone the contents in your local environment with the following console command:

git clone https://github.com/ponchotitlan/google_text-to-speech_prompt_maker.git

Once cloned, follow the next steps for environment setup:

1) GCP account setup

Before adjusting up the contents of this project, it is neccesary to setup the Cloud Text-to-Speech API in your Google Cloud project:

  1. Follow the official documentation for activating this API and creating a Service Account
  2. Generate a JSON key associated to this Service Account
  3. Save this JSON key file in the same location as the contents of this repository

2) CSV and YAML files

Prepare a CSV document with the texts that you want to convert into prompt audio files. The CSV must have the following structure:

    <FILE NAME WITHOUT THE EXTENSION> , <PROMPT TEXT OR COMPLIANT SSML GRAMMAR>

An Excel export to CSV format should be enough for rendering a compatible structure, ever since the text within a cell is dumped between quotes if it contains spaces. An example of a compliant file with SSML prompts would look like the following:

    sample_prompt_01,"<speak>Welcome to ACME. How can I help you today?</speak>"
    sample_prompt_02,"<speak>Press 1 for sales. <break time=200ms/>Press 2 for Tech Support. <break time=200ms/>Or stay in the line for agent support</speak>"
    ...

Additionally, prepare a YAML document with the structure mentioned in the setup.yaml file included in this repository. The fields are the following:

# CSV format is: FILE_NAME , PROMPT_CONTENT
csv_prompts_file: <my_csv_file.csv>

google_settings:
    # ROUTE TO THE JSON KEY ASSOCIATED TO GCP. IF THE ROUTE HAS SPACES, ADD QUOTES TO THE VALUE
    JSON_key: <my_key.json>

    # PROMPT TYPE. ALLOWED VALUES ARE:
    # normal | SSML
    prompt_type: SSML

    # FILE FORMAT. ALLOWED VALUES ARE:
    # wav | mp3
    output_audio_format: wav

    # COMPLIANT LANGUAGE CODE. SEE https://cloud.google.com/text-to-speech/docs/voices FOR COMPATIBLE CODES
    language_code: es-US

    # COMPLIANT VOICE NAME. SEE https://cloud.google.com/text-to-speech/docs/voices FOR COMPATIBLE NAMES
    voice_name: es-US-Wavenet-C

    # COMPLIANT VOICE GENDER. SEE https://cloud.google.com/text-to-speech/docs/voices FOR COMPATIBLE GENDERS WITH THE SELECTED VOICE ABOVE
    voice_gender: MALE

    # COMPLIANT AUDIO ENCODING. SUPPORTED TYPES ARE:
    # AUDIO_ENCODING_UNSPECIFIED | LINEAR16 | MP3 | OGG_OPUS
    audio_encoding: LINEAR16

3) Dependencies installation

Install the requirements in a virtual environment with the following command:

pip install -r requirements.txt

4) Inline calling

The usage of the script requires the following inline elements:

usage: init.py [-h] [-b BATCH] configurationYAML

Batch prompt generation with Google TTS services

positional arguments:
  configurationYAML     YAML file with operation settings

optional arguments:
  -h, --help            show this help message and exit
  -b BATCH, --batch BATCH
                        Amount of rows in the CSV file to process at the same
                        time. Suggested max value is 100. Default is 10

An example is:

py init.py setup.yaml

The command prompt will show logs based on the status of each row:

✅ Prompt sample_prompt_04.WAV created successfully!
✅ Prompt sample_prompt_01.WAV created successfully!
✅ Prompt sample_prompt_03.WAV created successfully!
✅ Prompt sample_prompt_02.WAV created successfully!

The corresponding audio files will be saved in the same location where this script is executed.

5) Encoding for Cisco CVP Audio Elements

Unfortunately, Google Text-To-Speech service does not support the compulsory 8-bit μ-law encoding as per the Python SDK documentation (I am currently working on a Java version which does support this encoding. This option might be released in the Python SDK in the future). However, there are many online services such as this one for achieving the aforementioned. Audacity can also be used for the purpose. Follow this tutorial for compatible file conversion steps. There's a more straightforward tool which has been proven useful for me in order to process batch files with the CVP compatible settings.

The resulting files can later be uploaded into the Tomcat server for usage within a design in Cisco CallStudio. The route within the CVP Windows Server VM is the following:

    C:\Cisco\CVP\VXMLServer\Tomcat\webapps\CVP\audio

Please refer to the Official Cisco Documentation for more information.

Crafted with ❤️ by Alfonso Sandoval - Cisco

You might also like...
Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)
Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)

TOPSIS implementation in Python Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) CHING-LAI Hwang and Yoon introduced TOPSIS

voice2json is a collection of command-line tools for offline speech/intent recognition on Linux
voice2json is a collection of command-line tools for offline speech/intent recognition on Linux

Command-line tools for speech and intent recognition on Linux

Ptorch NLU, a Chinese text classification and sequence annotation toolkit, supports multi class and multi label classification tasks of Chinese long text and short text, and supports sequence annotation tasks such as Chinese named entity recognition, part of speech tagging and word segmentation.

Pytorch-NLU,一个中文文本分类、序列标注工具包,支持中文长文本、短文本的多类、多标签分类任务,支持中文命名实体识别、词性标注、分词等序列标注任务。 Ptorch NLU, a Chinese text classification and sequence annotation toolkit, supports multi class and multi label classification tasks of Chinese long text and short text, and supports sequence annotation tasks such as Chinese named entity recognition, part of speech tagging and word segmentation.

A Python module made to simplify the usage of Text To Speech and Speech Recognition.
A Python module made to simplify the usage of Text To Speech and Speech Recognition.

Nav Module The solution for voice related stuff in Python Nav is a Python module which simplifies voice related stuff in Python. Just import the Modul

Code for ACL 2022 main conference paper "STEMM: Self-learning with Speech-text Manifold Mixup for Speech Translation".

STEMM: Self-learning with Speech-Text Manifold Mixup for Speech Translation This is a PyTorch implementation for the ACL 2022 main conference paper ST

Code and datasets for our paper "PTR: Prompt Tuning with Rules for Text Classification"

PTR Code and datasets for our paper "PTR: Prompt Tuning with Rules for Text Classification" If you use the code, please cite the following paper: @art

Command Line Text-To-Speech using Google TTS
Command Line Text-To-Speech using Google TTS

cli-tts Thanks to gTTS by @pndurette! This is an interactive command line text-to-speech tool using Google TTS. Just type text and the voice will be p

Releases(v1.2.0)
Owner
Ponchotitlán
💻 ☕ 🥃 Let's talk about networks coding, automation and orchestration autour a cup of coffee, and a sip of tequila;
Ponchotitlán
Chinese segmentation library

What is loso? loso is a Chinese segmentation system written in Python. It was developed by Victor Lin ( Fang-Pen Lin 82 Jun 28, 2022

🤗🖼️ HuggingPics: Fine-tune Vision Transformers for anything using images found on the web.

🤗 🖼️ HuggingPics Fine-tune Vision Transformers for anything using images found on the web. Check out the video below for a walkthrough of this proje

Nathan Raw 185 Dec 21, 2022
[ICLR'19] Trellis Networks for Sequence Modeling

TrellisNet for Sequence Modeling This repository contains the experiments done in paper Trellis Networks for Sequence Modeling by Shaojie Bai, J. Zico

CMU Locus Lab 460 Oct 13, 2022
InferSent sentence embeddings

InferSent InferSent is a sentence embeddings method that provides semantic representations for English sentences. It is trained on natural language in

Facebook Research 2.2k Dec 27, 2022
Sentiment Analysis Project using Count Vectorizer and TF-IDF Vectorizer

Sentiment Analysis Project This project contains two sentiment analysis programs for Hotel Reviews using a Hotel Reviews dataset from Datafiniti. The

Simran Farrukh 0 Mar 28, 2022
This repo stores the codes for topic modeling on palliative care journals.

This repo stores the codes for topic modeling on palliative care journals. Data Preparation You first need to download the journal papers. bash 1_down

3 Dec 20, 2022
This converter will create the exact measure for your cappuccino recipe from the grandiose Rafaella Ballerini!

About CappuccinoJs This converter will create the exact measure for your cappuccino recipe from the grandiose Rafaella Ballerini! Este conversor criar

Arthur Ottoni Ribeiro 48 Nov 15, 2022
Code examples for my Write Better Python Code series on YouTube.

Write Better Python Code This repository contains the code examples used in my Write Better Python Code series published on YouTube: https:/

858 Dec 29, 2022
👑 spaCy building blocks and visualizers for Streamlit apps

spacy-streamlit: spaCy building blocks for Streamlit apps This package contains utilities for visualizing spaCy models and building interactive spaCy-

Explosion 620 Dec 29, 2022
A minimal Conformer ASR implementation adapted from ESPnet.

Conformer ASR A minimal Conformer ASR implementation adapted from ESPnet. Introduction I want to use the pre-trained English ASR model provided by ESP

Niu Zhe 3 Jan 24, 2022
ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators

ELECTRA Introduction ELECTRA is a method for self-supervised language representation learning. It can be used to pre-train transformer networks using

Google Research 2.1k Dec 28, 2022
DensePhrases provides answers to your natural language questions from the entire Wikipedia in real-time

DensePhrases provides answers to your natural language questions from the entire Wikipedia in real-time. While it efficiently searches the answers out of 60 billion phrases in Wikipedia, it is also v

Jinhyuk Lee 543 Jan 08, 2023
A simple command line tool for text to image generation, using OpenAI's CLIP and a BigGAN

artificial intelligence cosmic love and attention fire in the sky a pyramid made of ice a lonely house in the woods marriage in the mountains lantern

Phil Wang 2.3k Jan 01, 2023
Machine Psychology: Python Generated Art

Machine Psychology: Python Generated Art A limited collection of 64 algorithmically generated artwork. Each unique piece is then given a title by the

Pixegami Team 67 Dec 13, 2022
Python Implementation of ``Modeling the Influence of Verb Aspect on the Activation of Typical Event Locations with BERT'' (Findings of ACL: ACL 2021)

BERT-for-Surprisal Python Implementation of ``Modeling the Influence of Verb Aspect on the Activation of Typical Event Locations with BERT'' (Findings

7 Dec 05, 2022
translate using your voice

speech-to-text-translator Usage translate using your voice description this project makes translating a word easy, all you have to do is speak and...

1 Oct 18, 2021
Vad-sli-asr - A Python scripts for a speech processing pipeline with Voice Activity Detection (VAD)

VAD-SLI-ASR Python scripts for a speech processing pipeline with Voice Activity

Dynamics of Language 14 Dec 09, 2022
Conversational text Analysis using various NLP techniques

Conversational text Analysis using various NLP techniques

Rita Anjana 159 Jan 06, 2023
This repository contains the codes for LipGAN. LipGAN was published as a part of the paper titled "Towards Automatic Face-to-Face Translation".

LipGAN Generate realistic talking faces for any human speech and face identity. [Paper] | [Project Page] | [Demonstration Video] Important Update: A n

Rudrabha Mukhopadhyay 438 Dec 31, 2022
Korean Simple Contrastive Learning of Sentence Embeddings using SKT KoBERT and kakaobrain KorNLU dataset

KoSimCSE Korean Simple Contrastive Learning of Sentence Embeddings implementation using pytorch SimCSE Installation git clone https://github.com/BM-K/

34 Nov 24, 2022