A minimal implementation of face-detection models using flask, gunicorn, nginx, docker, and docker-compose

Overview

Face-Detection-flask-gunicorn-nginx-docker

This is a simple implementation of dockerized face-detection restful-API implemented with flask, Nginx, and scaled up with Gunicorn. This web service accepts an image as input and returns face-box coordinates.

Notes

  1. For face-detection, I used pytorch version of mtcnn from deep_utils library. For more information check out deep_utils.
  2. The service is scaled up using gunicorn. The gunicorn is a simple library with high throughput for scaling python services.
    1. To increase the number workers, increase number of workers in the docker-compose.yml file.
    2. For more information about gunicorn workers and threads check the following stackoverflow question
    3. gunicorn-workers-and-threads
  3. nginx is used as a reverse proxy

Setup

  1. The face-detection name in docker-compose can be changed to any of the models available by deep-utils library.
  2. For simplicity, I placed the weights of the mtcnn-torch model in app/weights.
  3. To use different face-detection models in deep_utils, apply the following changes:
    1. Change the value of FACE_DETECTION_MODEL in the docker-compose.yml file.
    2. Modify configs of a new model in app/base_app.py file.
    3. It's recommended to run the new model in your local system and acquire the downloaded weights from ~/.deep_utils directory and place it inside app/weights directory. This will save you tons of time while working with models with heavy weights.
    4. If your new model is based on tensorflow, comment the pytorch installation section in app/Dockerfile and uncomment the tensorflow installation lines.

RUN

To run the API, install docker and docker-compose, execute the following command:

windows

docker-compose up --build

Linux

sudo docker-compose up --build

Inference

To send an image and get back the boxes run the following commands: curl --request POST ip:port/endpoint -F [email protected]

If you run the service on your local system the following request shall work perfectly:

curl --request POST http://127.0.0.1:8000/face -F image=@./sample-images/movie-stars.jpg

The output will be as follows:

{
"face_1":[269,505,571,726],
"face_10":[73,719,186,809],
"face_11":[52,829,172,931],
"face_2":[57,460,187,550],
"face_3":[69,15,291,186],
"face_4":[49,181,185,279],
"face_5":[53,318,205,424],
"face_6":[18,597,144,716],
"face_7":[251,294,474,444],
"face_8":[217,177,403,315],
"face_9":[175,765,373,917]
}

Issues

If you find something missing, please open an issue or kindly create a pull request.

References

1.https://github.com/pooya-mohammadi/deep_utils

Licence

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at: http://www.apache.org/licenses/LICENSE-2.0.

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and limitations under the License.

Reverse engineering Rosetta 2 in M1 Mac

Project Champollion About this project Rosetta 2 is an emulation mechanism to run the x86_64 applications on Arm-based Apple Silicon with Ahead-Of-Tim

FFRI Security, Inc. 258 Jan 07, 2023
An implementation of the Contrast Predictive Coding (CPC) method to train audio features in an unsupervised fashion.

CPC_audio This code implements the Contrast Predictive Coding algorithm on audio data, as described in the paper Unsupervised Pretraining Transfers we

Meta Research 283 Dec 30, 2022
Decorators for maximizing memory utilization with PyTorch & CUDA

torch-max-mem This package provides decorators for memory utilization maximization with PyTorch and CUDA by starting with a maximum parameter size and

Max Berrendorf 10 May 02, 2022
An implementation for Neural Architecture Search with Random Labels (CVPR 2021 poster) on Pytorch.

Neural Architecture Search with Random Labels(RLNAS) Introduction This project provides an implementation for Neural Architecture Search with Random L

18 Nov 08, 2022
An Industrial Grade Federated Learning Framework

DOC | Quick Start | 中文 FATE (Federated AI Technology Enabler) is an open-source project initiated by Webank's AI Department to provide a secure comput

Federated AI Ecosystem 4.8k Jan 09, 2023
Implementation of Online Label Smoothing in PyTorch

Online Label Smoothing Pytorch implementation of Online Label Smoothing (OLS) presented in Delving Deep into Label Smoothing. Introduction As the abst

83 Dec 14, 2022
Leveraging Two Types of Global Graph for Sequential Fashion Recommendation, ICMR 2021

This is the repo for the paper: Leveraging Two Types of Global Graph for Sequential Fashion Recommendation Requirements OS: Ubuntu 16.04 or higher ver

Yujuan Ding 10 Oct 10, 2022
ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectives

Status: Under development (expect bug fixes and huge updates) ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectiv

37 Dec 28, 2022
Company clustering with K-means/GMM and visualization with PCA, t-SNE, using SSAN relation extraction

RE results graph visualization and company clustering Installation pip install -r requirements.txt python -m nltk.downloader stopwords python3.7 main.

Jieun Han 1 Oct 06, 2022
Temporal Dynamic Convolutional Neural Network for Text-Independent Speaker Verification and Phonemetic Analysis

TDY-CNN for Text-Independent Speaker Verification Official implementation of Temporal Dynamic Convolutional Neural Network for Text-Independent Speake

Seong-Hu Kim 16 Oct 17, 2022
Implementation for the paper: Invertible Denoising Network: A Light Solution for Real Noise Removal (CVPR2021).

Invertible Image Denoising This is the PyTorch implementation of paper: Invertible Denoising Network: A Light Solution for Real Noise Removal (CVPR 20

157 Dec 25, 2022
Rational Activation Functions - Replacing Padé Activation Units

Rational Activations - Learnable Rational Activation Functions First introduce as PAU in Padé Activation Units: End-to-end Learning of Activation Func

<a href=[email protected]"> 38 Nov 22, 2022
Deep Convolutional Generative Adversarial Networks

Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks Alec Radford, Luke Metz, Soumith Chintala All images in t

Alec Radford 3.4k Dec 29, 2022
Public repository created to store my custom-made tools for Just Dance (UbiArt Engine)

Woody's Just Dance Tools Public repository created to store my custom-made tools for Just Dance (UbiArt Engine) Development and updates Almost all of

Wodson de Andrade 8 Dec 24, 2022
Code for the paper: Fighting Fake News: Image Splice Detection via Learned Self-Consistency

Fighting Fake News: Image Splice Detection via Learned Self-Consistency [paper] [website] Minyoung Huh *12, Andrew Liu *1, Andrew Owens1, Alexei A. Ef

minyoung huh (jacob) 174 Dec 09, 2022
PyTorch implementation of Memory-based semantic segmentation for off-road unstructured natural environments.

MemSeg: Memory-based semantic segmentation for off-road unstructured natural environments Introduction This repository is a PyTorch implementation of

11 Nov 28, 2022
Public Implementation of ChIRo from "Learning 3D Representations of Molecular Chirality with Invariance to Bond Rotations"

Learning 3D Representations of Molecular Chirality with Invariance to Bond Rotations This directory contains the model architectures and experimental

35 Dec 05, 2022
Source code for CVPR 2020 paper "Learning to Forget for Meta-Learning"

L2F - Learning to Forget for Meta-Learning Sungyong Baik, Seokil Hong, Kyoung Mu Lee Source code for CVPR 2020 paper "Learning to Forget for Meta-Lear

Sungyong Baik 29 May 22, 2022
This repo contains the official code of our work SAM-SLR which won the CVPR 2021 Challenge on Large Scale Signer Independent Isolated Sign Language Recognition.

Skeleton Aware Multi-modal Sign Language Recognition By Songyao Jiang, Bin Sun, Lichen Wang, Yue Bai, Kunpeng Li and Yun Fu. Smile Lab @ Northeastern

Isen (Songyao Jiang) 128 Dec 08, 2022
Lorien: A Unified Infrastructure for Efficient Deep Learning Workloads Delivery

Lorien: A Unified Infrastructure for Efficient Deep Learning Workloads Delivery Lorien is an infrastructure to massively explore/benchmark the best sc

Amazon Web Services - Labs 45 Dec 12, 2022