This is a project based on retinaface face detection, including ghostnet and mobilenetv3

Overview

English | 简体中文

RetinaFace in PyTorch

Chinese detailed blog:https://zhuanlan.zhihu.com/p/379730820

stream

Face recognition with masks is still robust-----------------------------------

stream

Version Run Library Test of pytorch_retinaface

How well retinaface works can only be verified by comparison experiments. Here we test the pytorch_retinaface version, which is the one with the highest star among all versions in the community.

Data set preparation

This address contains the clean Wideface dataset:https://github.com/Linzaer/Ultra-Light-Fast-Generic-Face-Detector-1MB

在这里插入图片描述

The downloaded dataset contains a total of these three.

在这里插入图片描述

At this point the folder is image only, however the author requires the data in the format of:

在这里插入图片描述

So we are still missing the index file for the data, and this is the time to use the script provided by the authorwider_val.py. Export the image information to a txt file, the full format of the export is as follows.

在这里插入图片描述

Each dataset has a txt file containing the sample information. The content of the txt file is roughly like this (take train.txt as an example), containing image information and face location information.

# 0--Parade/0_Parade_marchingband_1_849.jpg
449 330 122 149 488.906 373.643 0.0 542.089 376.442 0.0 515.031 412.83 0.0 485.174 425.893 0.0 538.357 431.491 0.0 0.82
# 0--Parade/0_Parade_Parade_0_904.jpg
361 98 263 339 424.143 251.656 0.0 547.134 232.571 0.0 494.121 325.875 0.0 453.83 368.286 0.0 561.978 342.839 0.0 0.89

Model Training

python train.py --network mobile0.25 

If necessary, please download the pre-trained model first and put it in the weights folder. If you want to start training from scratch, specify 'pretrain': False, in the data/config.py file.

Model Evaluation

cd ./widerface_evaluate
python setup.py build_ext --inplace
python test_widerface.py --trained_model ./weights/mobilenet0.25_Final.pth --network mobile0.25
python widerface_evaluate/evaluation.py

GhostNet and MobileNetv3 migration backbone

3.1 pytorch_retinaface source code modification

After the test in the previous section, and took a picture containing only one face for detection, it can be found that resnet50 for the detection of a single picture and the picture contains only a single face takes longer, if the project focuses on real-time then mb0.25 is a better choice, but for the face dense and small-scale scenario is more strenuous. If the skeleton is replaced by another backbone, is it possible to balance real-time and accuracy? The backbone replacement here temporarily uses ghostnet and mobilev3 network (mainly also want to test whether the effect of these two networks can be as outstanding as the paper).

We specify the relevant reference in the parent class of the retinaface.py file,and specify the network layer ID to be called in IntermediateLayerGetter(backbone, cfg['return_layers']), which is specified in the config.py file as follows.

def __init__(self, cfg=None, phase='train'):
    """
    :param cfg:  Network related settings.
    :param phase: train or test.
    """
    super(RetinaFace, self).__init__()
    self.phase = phase
    backbone = None
    if cfg['name'] == 'mobilenet0.25':
        backbone = MobileNetV1()
        if cfg['pretrain']:
            checkpoint = torch.load("./weights/mobilenetV1X0.25_pretrain.tar", map_location=torch.device('cpu'))
            from collections import OrderedDict
            new_state_dict = OrderedDict()
            for k, v in checkpoint['state_dict'].items():
                name = k[7:]  # remove module.
                new_state_dict[name] = v
            # load params
            backbone.load_state_dict(new_state_dict)
    elif cfg['name'] == 'Resnet50':
        import torchvision.models as models
        backbone = models.resnet50(pretrained=cfg['pretrain'])
    elif cfg['name'] == 'ghostnet':
        backbone = ghostnet()
    elif cfg['name'] == 'mobilev3':
        backbone = MobileNetV3()

    self.body = _utils.IntermediateLayerGetter(backbone, cfg['return_layers'])

We specify the number of network channels of the FPN and fix the in_channels of each layer for the three-layer FPN structure formulated in the model.

in_channels_stage2 = cfg['in_channel']
        in_channels_list = [
            in_channels_stage2 * 2,
            in_channels_stage2 * 4,
            in_channels_stage2 * 8,
        ]
        out_channels = cfg['out_channel']
        # self.FPN = FPN(in_channels_list, out_channels)
        self.FPN = FPN(in_channels_list, out_channels)

We insert the ghontnet network in models/ghostnet.py, and the network structure comes from the Noah's Ark Labs open source addresshttps://github.com/huawei-noah/ghostnet

Lightweight network classification effect comparison:

stream

Because of the inclusion of the residual convolution separation module and the SE module, the source code is relatively long, and the source code of the modified network is as followsmodels/ghostnet.py

We insert the MobileNetv3 network in models/mobilev3.py. The network structure comes from the pytorch version reproduced by github users, so it's really plug-and-playhttps://github.com/kuan-wang/pytorch-mobilenet-v3

The modified source code is as follows.models/mobilenetv3.py

3.2 Model Training

Execute the command: python train.py --network ghostnet to start training

stream

Counting the duration of training a single epoch per network.

  • resnet50>>mobilenetv3>ghostnet-m>ghostnet-s>mobilenet0.25

3.3 Model Testing and Evaluation

Test GhostNet(se-ratio=0.25):

As you can see, a batch test is about 56ms

Evaluation GhostNet(se-ratio=0.25): 在这里插入图片描述

It can be seen that ghostnet is relatively poor at recognizing small sample data and face occlusion.

Test MobileNetV3(se-ratio=1):

在这里插入图片描述

可以看出,一份batch的测试大概在120ms左右

Evaluation MobileNetV3(se-ratio=1): 在这里插入图片描述

The evaluation here outperforms ghostnet on all three subsets (the comparison here is actually a bit unscientific, because the full se_ratio of mbv3 is used to benchmark ghostnet's se_ratio by 1/4, but the full se_ratio of ghostnet will cause the model memory to skyrocket (at se-ratio=0) weights=6M, se-ratio=0.25 when weights=12M, se-ratio=1 when weights=30M, and the accuracy barely exceeds that of MobileNetV3 with se-ratio=1, I personally feel that the cost performance is too low)

Translated with www.DeepL.com/Translator (free version)

3.4 Model Demo

  • Use webcam:

    python detect.py -fourcc 0

  • Detect Face:

    python detect.py --image img_path

  • Detect Face and save:

    python detect.py --image img_path --sava_image True

3.2 comparision of resnet & mbv3 & gnet & mb0.25

Reasoning Performance Comparison:

Backbone Computing backend size(MB) Framework input_size Run time
resnet50 Core i5-4210M 106 torch 640 1571 ms
$GhostNet-m^{Se=0.25}$ Core i5-4210M 12 torch 640 403 ms
MobileNet v3 Core i5-4210M 8 torch 640 576 ms
MobileNet0.25 Core i5-4210M 1.7 torch 640 187 ms
MobileNet0.25 Core i5-4210M 1.7 onnxruntime 640 73 ms

Testing performance comparison:

Backbone Easy Medium Hard
resnet50 95.48% 94.04% 84.43%
$MobileNet v3^{Se=1}$ 93.48% 91.23% 80.19%
$GhostNet-m^{Se=0.25}$ 93.35% 90.84% 76.11%
MobileNet0.25 90.70% 88.16% 73.82%

Comparison of the effect of single chart test:

stream

Chinese detailed blog:https://zhuanlan.zhihu.com/p/379730820

References

Owner
pogg
Hello, I'm pogg. I will record some interesting experiment here.
pogg
Introduction to Statistics and Basics of Mathematics for Data Science - The Hacker's Way

HackerMath for Machine Learning “Study hard what interests you the most in the most undisciplined, irreverent and original manner possible.” ― Richard

Amit Kapoor 1.4k Dec 22, 2022
TransZero++: Cross Attribute-guided Transformer for Zero-Shot Learning

TransZero++ This repository contains the testing code for the paper "TransZero++: Cross Attribute-guided Transformer for Zero-Shot Learning" submitted

Shiming Chen 6 Aug 16, 2022
disentanglement_lib is an open-source library for research on learning disentangled representations.

disentanglement_lib disentanglement_lib is an open-source library for research on learning disentangled representation. It supports a variety of diffe

Google Research 1.3k Dec 28, 2022
PyTorch package for the discrete VAE used for DALL·E.

Overview [Blog] [Paper] [Model Card] [Usage] This is the official PyTorch package for the discrete VAE used for DALL·E. Installation Before running th

OpenAI 9.5k Jan 05, 2023
A PyTorch implementation of Sharpness-Aware Minimization for Efficiently Improving Generalization

sam.pytorch A PyTorch implementation of Sharpness-Aware Minimization for Efficiently Improving Generalization ( Foret+2020) Paper, Official implementa

Ryuichiro Hataya 102 Dec 28, 2022
Exporter for Storage Area Network (SAN)

SAN Exporter Prometheus exporter for Storage Area Network (SAN). We all know that each SAN Storage vendor has their own glossary of terms, health/perf

vCloud 32 Dec 16, 2022
Construct a neural network frame by Numpy

本项目的CSDN博客链接:https://blog.csdn.net/weixin_41578567/article/details/111482022 1. 概览 本项目主要用于神经网络的学习,通过基于numpy的实现,了解神经网络底层前向传播、反向传播以及各类优化器的原理。 该项目目前已实现的功

24 Jan 22, 2022
HINet: Half Instance Normalization Network for Image Restoration

HINet: Half Instance Normalization Network for Image Restoration Liangyu Chen, Xin Lu, Jie Zhang, Xiaojie Chu, Chengpeng Chen Paper: https://arxiv.org

303 Dec 31, 2022
This is a collection of simple PyTorch implementations of neural networks and related algorithms. These implementations are documented with explanations,

labml.ai Deep Learning Paper Implementations This is a collection of simple PyTorch implementations of neural networks and related algorithms. These i

labml.ai 16.4k Jan 09, 2023
Pytorch implementation of "M-LSD: Towards Light-weight and Real-time Line Segment Detection"

M-LSD: Towards Light-weight and Real-time Line Segment Detection Pytorch implementation of "M-LSD: Towards Light-weight and Real-time Line Segment Det

123 Jan 04, 2023
SSPNet: Scale Selection Pyramid Network for Tiny Person Detection from UAV Images.

SSPNet: Scale Selection Pyramid Network for Tiny Person Detection from UAV Images (IEEE GRSL 2021) Code (based on mmdetection) for SSPNet: Scale Selec

Italian Cannon 37 Dec 28, 2022
Contextual Attention Localization for Offline Handwritten Text Recognition

CALText This repository contains the source code for CALText model introduced in "CALText: Contextual Attention Localization for Offline Handwritten T

0 Feb 17, 2022
[AI6122] Text Data Management & Processing

[AI6122] Text Data Management & Processing is an elective course of MSAI, SCSE, NTU, Singapore. The repository corresponds to the AI6122 of Semester 1, AY2021-2022, starting from 08/2021. The instruc

HT. Li 1 Jan 17, 2022
GNNAdvisor: An Efficient Runtime System for GNN Acceleration on GPUs

GNNAdvisor: An Efficient Runtime System for GNN Acceleration on GPUs [Paper, Slides, Video Talk] at USENIX OSDI'21 @inproceedings{GNNAdvisor, title=

YUKE WANG 47 Jan 03, 2023
Self-Supervised Pre-Training for Transformer-Based Person Re-Identification

Self-Supervised Pre-Training for Transformer-Based Person Re-Identification [pdf] The official repository for Self-Supervised Pre-Training for Transfo

Hao Luo 116 Jan 04, 2023
Hypersearch weight debugging and losses tutorial

tutorial Activate tensorboard option Running TensorBoard remotely When working on a remote server, you can use SSH tunneling to forward the port of th

1 Dec 11, 2021
Code for Multiple Instance Active Learning for Object Detection, CVPR 2021

MI-AOD Language: 简体中文 | English Introduction This is the code for Multiple Instance Active Learning for Object Detection (The PDF is not available tem

Tianning Yuan 269 Dec 21, 2022
Code for the IJCAI 2021 paper "Structure Guided Lane Detection"

SGNet Project for the IJCAI 2021 paper "Structure Guided Lane Detection" Abstract Recently, lane detection has made great progress with the rapid deve

Jinming Su 27 Dec 08, 2022
Implementation for our AAAI2021 paper (Entity Structure Within and Throughout: Modeling Mention Dependencies for Document-Level Relation Extraction).

SSAN Introduction This is the pytorch implementation of the SSAN model (see our AAAI2021 paper: Entity Structure Within and Throughout: Modeling Menti

benfeng 69 Nov 15, 2022
OrienMask: Real-time Instance Segmentation with Discriminative Orientation Maps

OrienMask This repository implements the framework OrienMask for real-time instance segmentation. It achieves 34.8 mask AP on COCO test-dev at the spe

45 Dec 13, 2022