Official Code for ICML 2021 paper "Revisiting Point Cloud Shape Classification with a Simple and Effective Baseline"

Overview

Revisiting Point Cloud Shape Classification with a Simple and Effective Baseline
Ankit Goyal, Hei Law, Bowei Liu, Alejandro Newell, Jia Deng
International Conference on Machine Learning (ICML), 2021

If you find our work useful in your research, please consider citing:

@article{goyal2021revisiting,
  title={Revisiting Point Cloud Shape Classification with a Simple and Effective Baseline},
  author={Goyal, Ankit and Law, Hei and Liu, Bowei and Newell, Alejandro and Deng, Jia},
  journal={International Conference on Machine Learning},
  year={2021}
}

Getting Started

First clone the repository. We would refer to the directory containing the code as SimpleView.

git clone [email protected]:princeton-vl/SimpleView.git

Requirements

The code is tested on Linux OS with Python version 3.7.5, CUDA version 10.0, CuDNN version 7.6 and GCC version 5.4. We recommend using these versions especially for installing pointnet++ custom CUDA modules.

Install Libraries

We recommend you first install Anaconda and create a virtual environment.

conda create --name simpleview python=3.7.5

Activate the virtual environment and install the libraries. Make sure you are in SimpleView.

conda activate simpleview
pip install -r requirements.txt
conda install sed  # for downloading data and pretrained models

For PointNet++, we need to install custom CUDA modules. Make sure you have access to a GPU during this step. You might need to set the appropriate TORCH_CUDA_ARCH_LIST environment variable depending on your GPU model. The following command should work for most cases export TORCH_CUDA_ARCH_LIST="6.0;6.1;6.2;7.0;7.5". However, if the install fails, check if TORCH_CUDA_ARCH_LIST is correctly set. More details could be found here.

cd pointnet2_pyt && pip install -e . && cd ..

Download Datasets and Pre-trained Models

Make sure you are in SimpleView. download.sh script can be used for downloading all the data and the pretrained models. It also places them at the correct locations. First, use the following command to provide execute permission to the download.sh script.

chmod +x download.sh

To download ModelNet40 execute the following command. This will download the ModelNet40 point cloud dataset released with pointnet++ as well as the validation splits used in our work.

./download.sh modelnet40

To download the pretrained models, execute the following command.

./download.sh pretrained

Code Organization

  • SimpleView/models: Code for various models in PyTorch.
  • SimpleView/configs: Configuration files for various models.
  • SimpleView/main.py: Training and testing any models.
  • SimpleView/configs.py: Hyperparameters for different models and dataloader.
  • SimpleView/dataloader.py: Code for different variants of the dataloader.
  • SimpleView/*_utils.py: Code for various utility functions.

Running Experiments

Training and Config files

To train or test any model, we use the main.py script. The format for running this script is as follows.

python main.py --exp-config <path to the config>

The config files are named as <protocol>_<model_name><_extra>_run_<seed>.yaml (<protocol> ∈ [dgcnn, pointnet2, rscnn]; <model_name> ∈ [dgcnn, pointnet2, rscnn, pointnet, simpleview]; <_extra> ∈ ['',valid,0.5,0.25] ). For example, the config file to run an experiment for PointNet++ in DGCNN protocol with seed 1 dgcnn_pointnet2_run_1.yaml. To run a new experiment with a different seed, you need to change the SEED parameter in the config file. For all our experiments (including on the validation set) we do 4 runs with different seeds.

As discussed in the paper for the PointNet++ and SimpleView protocols, we need to first run an experiment to tune the number of epochs on the validation set. This could be done by first running the experiment <pointnet2/dgcnn>_<model_name>_valid_run_<seed>.yaml and then running the experiment <pointnet2/dgcnn>_<model_name>_run_<seed>.yaml. Based on the number of epochs achieving the best performance on the validation set, one could use the model trained on the complete training set to get the final test performance.

To train models on the partial training set (Table 7), use the configs named as dgcnn_<model_name>_valid_<0.25/0.5>_run_<seed>.yaml and <dgcnn>_<model_name>_<0.25/0.5>_run_<seed>.yaml.

Even with the same SEED the results could vary slightly because of the randomization introduced for faster cuDNN operations. More details could be found here

SimpleView Protocol

To run an experiment in the SimpleView protocol, there are two stages.

  • First tune the number of epochs on the validation set. This is done using configs dgcnn_<model_name>_valid_run_<seed>.yaml. Find the best number of epochs on the validation set, evaluated at every 25th epoch.
  • Train the model on the complete training set using configs dgcnn_<model_name>_run_<seed>.yaml. Use the performance on the test set at the fine-tuned number of epochs as the final performance.

Evaluate a pretrained model

We provide pretrained models. They can be downloaded using the ./download pretrained command and are stored in the SimpleView/pretrained folder. To test a pretrained model, the command is of the following format.

python main.py --entry <test/rscnn_vote/pn2_vote> --model-path pretrained/<cfg_name>/<model_name>.pth --exp-config configs/<cfg_name>.yaml

We list the evaluation commands in the eval_models.sh script. For example to evaluate models on the SimpleView protocol, use the commands here. Note that for the SimpleView and the Pointnet2 protocols, the model path has names in the format model_<epoch_id>.pth. Here epoch_id represents the number of epochs tuned on the validation set.

Performance of the released pretrained models on ModelNet40

Protocol → DGCNN - Smooth DCGNN - CE. RSCNN - No Vote PointNet - No Vote SimpleView
Method↓ (Tab. 2, Col. 7) (Tab. 2, Col. 6) (Tab. 2, Col. 5) (Tab. 2, Col. 2) (Tab. 4, Col. 2)
SimpleView 93.9 93.2 92.7 90.8 93.3
PointNet++ 93.0 92.8 92.6 89.7 92.6
DGCNN 92.6 91.8 92.2 89.5 92.0
RSCNN 92.3 92.0 92.2 89.4 91.6
PointNet 90.7 90.0 89.7 88.8 90.1

Acknowlegements

We would like to thank the authors of the following reposities for sharing their code.

  • PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation: 1, 2
  • PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space: 1, 2
  • Relation-Shape Convolutional Neural Network for Point Cloud Analysis: 1
  • Dynamic Graph CNN for Learning on Point Clouds: 1
Owner
Princeton Vision & Learning Lab
Princeton Vision & Learning Lab
ARAE-Tensorflow for Discrete Sequences (Adversarially Regularized Autoencoder)

ARAE Tensorflow Code Code for the paper Adversarially Regularized Autoencoders for Generating Discrete Structures by Zhao, Kim, Zhang, Rush and LeCun

19 Nov 12, 2021
Leveraging Two Types of Global Graph for Sequential Fashion Recommendation, ICMR 2021

This is the repo for the paper: Leveraging Two Types of Global Graph for Sequential Fashion Recommendation Requirements OS: Ubuntu 16.04 or higher ver

Yujuan Ding 10 Oct 10, 2022
Code image classification of MNIST dataset using different architectures: simple linear NN, autoencoder, and highway network

Deep Learning for image classification pip install -r http://webia.lip6.fr/~baskiotisn/requirements-amal.txt Train an autoencoder python3 train_auto

Hector Kohler 0 Mar 30, 2022
The 1st Place Solution of the Facebook AI Image Similarity Challenge (ISC21) : Descriptor Track.

ISC21-Descriptor-Track-1st The 1st Place Solution of the Facebook AI Image Similarity Challenge (ISC21) : Descriptor Track. You can check our solution

lyakaap 75 Jan 08, 2023
Wenet STT Python

Wenet STT Python Beta Software Simple Python library, distributed via binary wheels with few direct dependencies, for easily using WeNet models for sp

David Zurow 33 Feb 21, 2022
Generalized Data Weighting via Class-level Gradient Manipulation

Generalized Data Weighting via Class-level Gradient Manipulation This repository is the official implementation of Generalized Data Weighting via Clas

18 Nov 12, 2022
Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CVPR 2021)

Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CAC) Xin Lai*, Zhuotao Tian*, Li Jiang, Shu Liu, Hengshuang Zhao, Li

Jia Research Lab 137 Dec 14, 2022
Probabilistic Tracklet Scoring and Inpainting for Multiple Object Tracking

Probabilistic Tracklet Scoring and Inpainting for Multiple Object Tracking (CVPR 2021) Pytorch implementation of the ArTIST motion model. In this repo

Fatemeh 38 Dec 12, 2022
NaturalCC is a sequence modeling toolkit that allows researchers and developers to train custom models

NaturalCC NaturalCC is a sequence modeling toolkit that allows researchers and developers to train custom models for many software engineering tasks,

159 Dec 28, 2022
Official PyTorch code for the paper: "Point-Based Modeling of Human Clothing" (ICCV 2021)

Point-Based Modeling of Human Clothing Paper | Project page | Video This is an official PyTorch code repository of the paper "Point-Based Modeling of

Visual Understanding Lab @ Samsung AI Center Moscow 64 Nov 22, 2022
《A-CNN: Annularly Convolutional Neural Networks on Point Clouds》(2019)

A-CNN: Annularly Convolutional Neural Networks on Point Clouds Created by Artem Komarichev, Zichun Zhong, Jing Hua from Department of Computer Science

Artёm Komarichev 44 Feb 24, 2022
Paddle Graph Learning (PGL) is an efficient and flexible graph learning framework based on PaddlePaddle

DOC | Quick Start | 中文 Breaking News !! 🔥 🔥 🔥 OGB-LSC KDD CUP 2021 winners announced!! (2021.06.17) Super excited to announce our PGL team won TWO

1.5k Jan 06, 2023
FaceVerse: a Fine-grained and Detail-controllable 3D Face Morphable Model from a Hybrid Dataset (CVPR2022)

FaceVerse FaceVerse: a Fine-grained and Detail-controllable 3D Face Morphable Model from a Hybrid Dataset Lizhen Wang, Zhiyuan Chen, Tao Yu, Chenguang

Lizhen Wang 219 Dec 28, 2022
Spatial Contrastive Learning for Few-Shot Classification (SCL)

This repo contains the official implementation of Spatial Contrastive Learning for Few-Shot Classification (SCL), which presents of a novel contrastive learning method applied to few-shot image class

Yassine 34 Dec 25, 2022
[ICLR 2021] "CPT: Efficient Deep Neural Network Training via Cyclic Precision" by Yonggan Fu, Han Guo, Meng Li, Xin Yang, Yining Ding, Vikas Chandra, Yingyan Lin

CPT: Efficient Deep Neural Network Training via Cyclic Precision Yonggan Fu, Han Guo, Meng Li, Xin Yang, Yining Ding, Vikas Chandra, Yingyan Lin Accep

26 Oct 25, 2022
Fully Convlutional Neural Networks for state-of-the-art time series classification

Deep Learning for Time Series Classification As the simplest type of time series data, univariate time series provides a reasonably good starting poin

Stephen 572 Dec 23, 2022
Codes for [NeurIPS'21] You are caught stealing my winning lottery ticket! Making a lottery ticket claim its ownership.

You are caught stealing my winning lottery ticket! Making a lottery ticket claim its ownership Codes for [NeurIPS'21] You are caught stealing my winni

VITA 8 Nov 01, 2022
Python tools for 3D face: 3DMM, Mesh processing(transform, camera, light, render), 3D face representations.

face3d: Python tools for processing 3D face Introduction This project implements some basic functions related to 3D faces. You can use this to process

Yao Feng 2.3k Dec 30, 2022
[ICML 2022] The official implementation of Graph Stochastic Attention (GSAT).

Graph Stochastic Attention (GSAT) The official implementation of GSAT for our paper: Interpretable and Generalizable Graph Learning via Stochastic Att

85 Nov 27, 2022
Code for paper "Multi-level Disentanglement Graph Neural Network"

Multi-level Disentanglement Graph Neural Network (MD-GNN) This is a PyTorch implementation of the MD-GNN, and the code includes the following modules:

Lirong Wu 6 Dec 29, 2022