Code for the paper "Next Generation Reservoir Computing"

Overview

Next Generation Reservoir Computing

This is the code for the results and figures in our paper "Next Generation Reservoir Computing". They are written in Python, and require recent versions of NumPy, SciPy, and matplotlib. If you are using a Python environment like Anaconda, these are likely already installed.

Python Virtual Environment

If you are not using Anaconda, or want to run this code on the command line in vanilla Python, you can create a virtual environment with the required dependencies by running:

python3 -m venv env
./env/bin/pip install -r requirements.txt

This will install the most recent version of the requirements available to you. If you wish to use the exact versions we used, use requirements-exact.txt instead.

You can then run the individual scripts, for example:

./env/bin/python DoubleScrollNVAR-RK23.py
You might also like...
Code for the paper Learning the Predictability of the Future

Learning the Predictability of the Future Code from the paper Learning the Predictability of the Future. Website of the project in hyperfuture.cs.colu

PyTorch code for the paper: FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning
PyTorch code for the paper: FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning

FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning This is the PyTorch implementation of our paper: FeatMatch: Feature-Based Augmentat

Code for the paper A Theoretical Analysis of the Repetition Problem in Text Generation
Code for the paper A Theoretical Analysis of the Repetition Problem in Text Generation

A Theoretical Analysis of the Repetition Problem in Text Generation This repository share the code for the paper "A Theoretical Analysis of the Repeti

Code for our ICASSP 2021 paper: SA-Net: Shuffle Attention for Deep Convolutional Neural Networks
Code for our ICASSP 2021 paper: SA-Net: Shuffle Attention for Deep Convolutional Neural Networks

SA-Net: Shuffle Attention for Deep Convolutional Neural Networks (paper) By Qing-Long Zhang and Yu-Bin Yang [State Key Laboratory for Novel Software T

Open source repository for the code accompanying the paper 'Non-Rigid Neural Radiance Fields Reconstruction and Novel View Synthesis of a Deforming Scene from Monocular Video'.
Open source repository for the code accompanying the paper 'Non-Rigid Neural Radiance Fields Reconstruction and Novel View Synthesis of a Deforming Scene from Monocular Video'.

Non-Rigid Neural Radiance Fields This is the official repository for the project "Non-Rigid Neural Radiance Fields: Reconstruction and Novel View Synt

Code for the Shortformer model, from the paper by Ofir Press, Noah A. Smith and Mike Lewis.

Shortformer This repository contains the code and the final checkpoint of the Shortformer model. This file explains how to run our experiments on the

PyTorch code for ICLR 2021 paper Unbiased Teacher for Semi-Supervised Object Detection
PyTorch code for ICLR 2021 paper Unbiased Teacher for Semi-Supervised Object Detection

Unbiased Teacher for Semi-Supervised Object Detection This is the PyTorch implementation of our paper: Unbiased Teacher for Semi-Supervised Object Detection

Official code for paper "Optimization for Oriented Object Detection via Representation Invariance Loss".

Optimization for Oriented Object Detection via Representation Invariance Loss By Qi Ming, Zhiqiang Zhou, Lingjuan Miao, Xue Yang, and Yunpeng Dong. Th

Code for our CVPR 2021 paper
Code for our CVPR 2021 paper "MetaCam+DSCE"

Joint Noise-Tolerant Learning and Meta Camera Shift Adaptation for Unsupervised Person Re-Identification (CVPR'21) Introduction Code for our CVPR 2021

Comments
  • Generalized Performance

    Generalized Performance

    I modified the code given in this repo to what I think is a more generalized version (below) where the input is an array containing points generated by any sort of process. It gives a perfect result on predicting sin functions, but on a constant linear trend gives absolutely terrible, nonsense performance. By my understanding, that is simply the nature of reservoir computing, it can't handle a trend. Is that correct?

    I would also appreciate any other insight you might have on the generalization of this function. Thanks!

    import numpy as np
    import pandas as pd
    
    
    def load_linear(long=False, shape=None, start_date: str = "2021-01-01"):
        """Create a dataset of just zeroes for testing edge case."""
        if shape is None:
            shape = (500, 5)
        df_wide = pd.DataFrame(
            np.ones(shape), index=pd.date_range(start_date, periods=shape[0], freq="D")
        )
        df_wide = (df_wide * list(range(0, shape[1]))).cumsum()
        if not long:
            return df_wide
        else:
            df_wide.index.name = "datetime"
            df_long = df_wide.reset_index(drop=False).melt(
                id_vars=['datetime'], var_name='series_id', value_name='value'
            )
            return df_long
    
    
    def load_sine(long=False, shape=None, start_date: str = "2021-01-01"):
        """Create a dataset of just zeroes for testing edge case."""
        if shape is None:
            shape = (500, 5)
        df_wide = pd.DataFrame(
            np.ones(shape),
            index=pd.date_range(start_date, periods=shape[0], freq="D"),
            columns=range(shape[1])
        )
        X = pd.to_numeric(df_wide.index, errors='coerce', downcast='integer').values
    
        def sin_func(a, X):
            return a * np.sin(1 * X) + a
        for column in df_wide.columns:
            df_wide[column] = sin_func(column, X)
        if not long:
            return df_wide
        else:
            df_wide.index.name = "datetime"
            df_long = df_wide.reset_index(drop=False).melt(
                id_vars=['datetime'], var_name='series_id', value_name='value'
            )
            return df_long
    
    
    def predict_reservoir(df, forecast_length, warmup_pts, k=2, ridge_param=2.5e-6):
        # k =  # number of time delay taps
        # pass in traintime_pts to limit as .tail() for huge datasets?
    
        n_pts = df.shape[1]
        # handle short data edge case
        min_train_pts = 10
        max_warmup_pts = n_pts - min_train_pts
        if warmup_pts >= max_warmup_pts:
            warmup_pts = max_warmup_pts if max_warmup_pts > 0 else 0
    
        traintime_pts = n_pts - warmup_pts   # round(traintime / dt)
        warmtrain_pts = warmup_pts + traintime_pts
        testtime_pts = forecast_length + 1  # round(testtime / dt)
        maxtime_pts = n_pts  # round(maxtime / dt)
    
        # input dimension
        d = df.shape[0]
        # size of the linear part of the feature vector
        dlin = k * d
        # size of nonlinear part of feature vector
        dnonlin = int(dlin * (dlin + 1) / 2)
        # total size of feature vector: constant + linear + nonlinear
        dtot = 1 + dlin + dnonlin
    
        # create an array to hold the linear part of the feature vector
        x = np.zeros((dlin, maxtime_pts))
    
        # fill in the linear part of the feature vector for all times
        for delay in range(k):
            for j in range(delay, maxtime_pts):
                x[d * delay : d * (delay + 1), j] = df[:, j - delay]
    
        # create an array to hold the full feature vector for training time
        # (use ones so the constant term is already 1)
        out_train = np.ones((dtot, traintime_pts))
    
        # copy over the linear part (shift over by one to account for constant)
        out_train[1 : dlin + 1, :] = x[:, warmup_pts - 1 : warmtrain_pts - 1]
    
        # fill in the non-linear part
        cnt = 0
        for row in range(dlin):
            for column in range(row, dlin):
                # shift by one for constant
                out_train[dlin + 1 + cnt] = (
                    x[row, warmup_pts - 1 : warmtrain_pts - 1]
                    * x[column, warmup_pts - 1 : warmtrain_pts - 1]
                )
                cnt += 1
    
        # ridge regression: train W_out to map out_train to Lorenz[t] - Lorenz[t - 1]
        W_out = (
            (x[0:d, warmup_pts:warmtrain_pts] - x[0:d, warmup_pts - 1 : warmtrain_pts - 1])
            @ out_train[:, :].T
            @ np.linalg.pinv(
                out_train[:, :] @ out_train[:, :].T + ridge_param * np.identity(dtot)
            )
        )
    
        # create a place to store feature vectors for prediction
        out_test = np.ones(dtot)  # full feature vector
        x_test = np.zeros((dlin, testtime_pts))  # linear part
    
        # copy over initial linear feature vector
        x_test[:, 0] = x[:, warmtrain_pts - 1]
    
        # do prediction
        for j in range(testtime_pts - 1):
            # copy linear part into whole feature vector
            out_test[1 : dlin + 1] = x_test[:, j]  # shift by one for constant
            # fill in the non-linear part
            cnt = 0
            for row in range(dlin):
                for column in range(row, dlin):
                    # shift by one for constant
                    out_test[dlin + 1 + cnt] = x_test[row, j] * x_test[column, j]
                    cnt += 1
            # fill in the delay taps of the next state
            x_test[d:dlin, j + 1] = x_test[0 : (dlin - d), j]
            # do a prediction
            x_test[0:d, j + 1] = x_test[0:d, j] + W_out @ out_test[:]
        return x_test[0:d, 1:]
    
    
    # note transposed from the opposite of my usual shape
    data_pts = 7000
    series = 3
    forecast_length = 10
    df_sine = load_sine(long=False, shape=(data_pts, series)).transpose().to_numpy()
    df_sine_train = df_sine[:, :-10]
    df_sine_test = df_sine[:, -10:]
    prediction_sine = predict_reservoir(df_sine_train, forecast_length=forecast_length, warmup_pts=150, k=2, ridge_param=2.5e-6)
    print(f"sine MAE {np.mean(np.abs(df_sine_test - prediction_sine))}")
    
    df_linear = load_linear(long=False, shape=(data_pts, series)).transpose().to_numpy()
    df_linear_train = df_linear[:, :-10]
    df_linear_test = df_linear[:, -10:]
    prediction_linear = predict_reservoir(df_linear_train, forecast_length=forecast_length, warmup_pts=150, k=2, ridge_param=2.5e-6)
    print(f"linear MAE {np.mean(np.abs(df_linear_test - prediction_linear))}")
    
    
    opened by winedarksea 2
  • Link to your paper

    Link to your paper

    I'm documenting here the link to your paper. I couldn't find it in the readme:


    Next generation reservoir computing

    Daniel J. Gauthier, Erik Bollt, Aaron Griffith & Wendson A. S. Barbosa 
    

    Nature Communications volume 12, Article number: 5564 (2021) https://www.nature.com/articles/s41467-021-25801-2

    opened by impredicative 1
Releases(v1.0)
Owner
OSU QuantInfo Lab
Daniel Gauthier's Research Group
OSU QuantInfo Lab
FEDn is an open-source, modular and ML-framework agnostic framework for Federated Machine Learning

FEDn is an open-source, modular and ML-framework agnostic framework for Federated Machine Learning (FedML) developed and maintained by Scaleout Systems. FEDn enables highly scalable cross-silo and cr

Scaleout 75 Nov 09, 2022
DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting

DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting Created by Yongming Rao*, Wenliang Zhao*, Guangyi Chen, Yansong Tang, Zheng Z

Yongming Rao 322 Dec 31, 2022
Multiview 3D object detection on MultiviewC dataset through moft3d.

Voxelized 3D Feature Aggregation for Multiview Detection [arXiv] Multiview 3D object detection on MultiviewC dataset through VFA. Introduction We prop

Jiahao Ma 20 Dec 21, 2022
Implementation of Auto-Conditioned Recurrent Networks for Extended Complex Human Motion Synthesis

acLSTM_motion This folder contains an implementation of acRNN for the CMU motion database written in Pytorch. See the following links for more backgro

Yi_Zhou 61 Sep 07, 2022
A deep learning model for style-specific music generation.

DeepJ: A model for style-specific music generation https://arxiv.org/abs/1801.00887 Abstract Recent advances in deep neural networks have enabled algo

Henry Mao 704 Nov 23, 2022
RSC-Net: 3D Human Pose, Shape and Texture from Low-Resolution Images and Videos

RSC-Net: 3D Human Pose, Shape and Texture from Low-Resolution Images and Videos Implementation for "3D Human Pose, Shape and Texture from Low-Resoluti

XiangyuXu 42 Nov 10, 2022
Implementation of "A Deep Learning Loss Function based on Auditory Power Compression for Speech Enhancement" by pytorch

This repository is used to suspend the results of our paper "A Deep Learning Loss Function based on Auditory Power Compression for Speech Enhancement"

ScorpioMiku 19 Sep 30, 2022
Uni-Fold: Training your own deep protein-folding models.

Uni-Fold: Training your own deep protein-folding models. This package provides and implementation of a trainable, Transformer-based deep protein foldi

DeepModeling 88 Jan 03, 2023
A scanpy extension to analyse single-cell TCR and BCR data.

Scirpy: A Scanpy extension for analyzing single-cell immune-cell receptor sequencing data Scirpy is a scalable python-toolkit to analyse T cell recept

ICBI 145 Jan 03, 2023
Chainer Implementation of Fully Convolutional Networks. (Training code to reproduce the original result is available.)

fcn - Fully Convolutional Networks Chainer implementation of Fully Convolutional Networks. Installation pip install fcn Inference Inference is done as

Kentaro Wada 218 Oct 27, 2022
Official PyTorch Implementation of Learning Self-Similarity in Space and Time as Generalized Motion for Video Action Recognition, ICCV 2021

Official PyTorch Implementation of Learning Self-Similarity in Space and Time as Generalized Motion for Video Action Recognition, ICCV 2021

26 Dec 07, 2022
MPViT:Multi-Path Vision Transformer for Dense Prediction

MPViT : Multi-Path Vision Transformer for Dense Prediction This repository inlcu

Youngwan Lee 272 Dec 20, 2022
[ICLR 2022] DAB-DETR: Dynamic Anchor Boxes are Better Queries for DETR

DAB-DETR This is the official pytorch implementation of our ICLR 2022 paper DAB-DETR. Authors: Shilong Liu, Feng Li, Hao Zhang, Xiao Yang, Xianbiao Qi

336 Dec 25, 2022
Baseline model for "GraspNet-1Billion: A Large-Scale Benchmark for General Object Grasping" (CVPR 2020)

GraspNet Baseline Baseline model for "GraspNet-1Billion: A Large-Scale Benchmark for General Object Grasping" (CVPR 2020). [paper] [dataset] [API] [do

GraspNet 209 Dec 29, 2022
Image Processing, Image Smoothing, Edge Detection and Transforms

opevcvdl-hw1 This project uses openCV and Qt to achieve the requirements. Version Python 3.7 opencv-contrib-python 3.4.2.17 Matplotlib 3.1.1 pyqt5 5.1

Kenny Cheng 3 Aug 17, 2022
Deep Learning Tutorial for Kaggle Ultrasound Nerve Segmentation competition, using Keras

Deep Learning Tutorial for Kaggle Ultrasound Nerve Segmentation competition, using Keras This tutorial shows how to use Keras library to build deep ne

Marko Jocić 922 Dec 19, 2022
Official PyTorch(Geometric) implementation of DPGNN(DPGCN) in "Distance-wise Prototypical Graph Neural Network for Node Imbalance Classification"

DPGNN This repository is an official PyTorch(Geometric) implementation of DPGNN(DPGCN) in "Distance-wise Prototypical Graph Neural Network for Node Im

Yu Wang (Jack) 18 Oct 12, 2022
Effect of Deep Transfer and Multi task Learning on Sperm Abnormality Detection

Effect of Deep Transfer and Multi task Learning on Sperm Abnormality Detection Introduction This repository includes codes and models of "Effect of De

Amir Abbasi 5 Sep 05, 2022
PromptDet: Expand Your Detector Vocabulary with Uncurated Images

PromptDet: Expand Your Detector Vocabulary with Uncurated Images Paper Website Introduction The goal of this work is to establish a scalable pipeline

103 Dec 20, 2022
A Distributional Approach To Controlled Text Generation

A Distributional Approach To Controlled Text Generation This is the repository code for the ICLR 2021 paper "A Distributional Approach to Controlled T

NAVER 102 Jan 07, 2023