Code for the paper "Next Generation Reservoir Computing"

Overview

Next Generation Reservoir Computing

This is the code for the results and figures in our paper "Next Generation Reservoir Computing". They are written in Python, and require recent versions of NumPy, SciPy, and matplotlib. If you are using a Python environment like Anaconda, these are likely already installed.

Python Virtual Environment

If you are not using Anaconda, or want to run this code on the command line in vanilla Python, you can create a virtual environment with the required dependencies by running:

python3 -m venv env
./env/bin/pip install -r requirements.txt

This will install the most recent version of the requirements available to you. If you wish to use the exact versions we used, use requirements-exact.txt instead.

You can then run the individual scripts, for example:

./env/bin/python DoubleScrollNVAR-RK23.py
You might also like...
Code for the paper Learning the Predictability of the Future

Learning the Predictability of the Future Code from the paper Learning the Predictability of the Future. Website of the project in hyperfuture.cs.colu

PyTorch code for the paper: FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning
PyTorch code for the paper: FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning

FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning This is the PyTorch implementation of our paper: FeatMatch: Feature-Based Augmentat

Code for the paper A Theoretical Analysis of the Repetition Problem in Text Generation
Code for the paper A Theoretical Analysis of the Repetition Problem in Text Generation

A Theoretical Analysis of the Repetition Problem in Text Generation This repository share the code for the paper "A Theoretical Analysis of the Repeti

Code for our ICASSP 2021 paper: SA-Net: Shuffle Attention for Deep Convolutional Neural Networks
Code for our ICASSP 2021 paper: SA-Net: Shuffle Attention for Deep Convolutional Neural Networks

SA-Net: Shuffle Attention for Deep Convolutional Neural Networks (paper) By Qing-Long Zhang and Yu-Bin Yang [State Key Laboratory for Novel Software T

Open source repository for the code accompanying the paper 'Non-Rigid Neural Radiance Fields Reconstruction and Novel View Synthesis of a Deforming Scene from Monocular Video'.
Open source repository for the code accompanying the paper 'Non-Rigid Neural Radiance Fields Reconstruction and Novel View Synthesis of a Deforming Scene from Monocular Video'.

Non-Rigid Neural Radiance Fields This is the official repository for the project "Non-Rigid Neural Radiance Fields: Reconstruction and Novel View Synt

Code for the Shortformer model, from the paper by Ofir Press, Noah A. Smith and Mike Lewis.

Shortformer This repository contains the code and the final checkpoint of the Shortformer model. This file explains how to run our experiments on the

PyTorch code for ICLR 2021 paper Unbiased Teacher for Semi-Supervised Object Detection
PyTorch code for ICLR 2021 paper Unbiased Teacher for Semi-Supervised Object Detection

Unbiased Teacher for Semi-Supervised Object Detection This is the PyTorch implementation of our paper: Unbiased Teacher for Semi-Supervised Object Detection

Official code for paper "Optimization for Oriented Object Detection via Representation Invariance Loss".

Optimization for Oriented Object Detection via Representation Invariance Loss By Qi Ming, Zhiqiang Zhou, Lingjuan Miao, Xue Yang, and Yunpeng Dong. Th

Code for our CVPR 2021 paper
Code for our CVPR 2021 paper "MetaCam+DSCE"

Joint Noise-Tolerant Learning and Meta Camera Shift Adaptation for Unsupervised Person Re-Identification (CVPR'21) Introduction Code for our CVPR 2021

Comments
  • Generalized Performance

    Generalized Performance

    I modified the code given in this repo to what I think is a more generalized version (below) where the input is an array containing points generated by any sort of process. It gives a perfect result on predicting sin functions, but on a constant linear trend gives absolutely terrible, nonsense performance. By my understanding, that is simply the nature of reservoir computing, it can't handle a trend. Is that correct?

    I would also appreciate any other insight you might have on the generalization of this function. Thanks!

    import numpy as np
    import pandas as pd
    
    
    def load_linear(long=False, shape=None, start_date: str = "2021-01-01"):
        """Create a dataset of just zeroes for testing edge case."""
        if shape is None:
            shape = (500, 5)
        df_wide = pd.DataFrame(
            np.ones(shape), index=pd.date_range(start_date, periods=shape[0], freq="D")
        )
        df_wide = (df_wide * list(range(0, shape[1]))).cumsum()
        if not long:
            return df_wide
        else:
            df_wide.index.name = "datetime"
            df_long = df_wide.reset_index(drop=False).melt(
                id_vars=['datetime'], var_name='series_id', value_name='value'
            )
            return df_long
    
    
    def load_sine(long=False, shape=None, start_date: str = "2021-01-01"):
        """Create a dataset of just zeroes for testing edge case."""
        if shape is None:
            shape = (500, 5)
        df_wide = pd.DataFrame(
            np.ones(shape),
            index=pd.date_range(start_date, periods=shape[0], freq="D"),
            columns=range(shape[1])
        )
        X = pd.to_numeric(df_wide.index, errors='coerce', downcast='integer').values
    
        def sin_func(a, X):
            return a * np.sin(1 * X) + a
        for column in df_wide.columns:
            df_wide[column] = sin_func(column, X)
        if not long:
            return df_wide
        else:
            df_wide.index.name = "datetime"
            df_long = df_wide.reset_index(drop=False).melt(
                id_vars=['datetime'], var_name='series_id', value_name='value'
            )
            return df_long
    
    
    def predict_reservoir(df, forecast_length, warmup_pts, k=2, ridge_param=2.5e-6):
        # k =  # number of time delay taps
        # pass in traintime_pts to limit as .tail() for huge datasets?
    
        n_pts = df.shape[1]
        # handle short data edge case
        min_train_pts = 10
        max_warmup_pts = n_pts - min_train_pts
        if warmup_pts >= max_warmup_pts:
            warmup_pts = max_warmup_pts if max_warmup_pts > 0 else 0
    
        traintime_pts = n_pts - warmup_pts   # round(traintime / dt)
        warmtrain_pts = warmup_pts + traintime_pts
        testtime_pts = forecast_length + 1  # round(testtime / dt)
        maxtime_pts = n_pts  # round(maxtime / dt)
    
        # input dimension
        d = df.shape[0]
        # size of the linear part of the feature vector
        dlin = k * d
        # size of nonlinear part of feature vector
        dnonlin = int(dlin * (dlin + 1) / 2)
        # total size of feature vector: constant + linear + nonlinear
        dtot = 1 + dlin + dnonlin
    
        # create an array to hold the linear part of the feature vector
        x = np.zeros((dlin, maxtime_pts))
    
        # fill in the linear part of the feature vector for all times
        for delay in range(k):
            for j in range(delay, maxtime_pts):
                x[d * delay : d * (delay + 1), j] = df[:, j - delay]
    
        # create an array to hold the full feature vector for training time
        # (use ones so the constant term is already 1)
        out_train = np.ones((dtot, traintime_pts))
    
        # copy over the linear part (shift over by one to account for constant)
        out_train[1 : dlin + 1, :] = x[:, warmup_pts - 1 : warmtrain_pts - 1]
    
        # fill in the non-linear part
        cnt = 0
        for row in range(dlin):
            for column in range(row, dlin):
                # shift by one for constant
                out_train[dlin + 1 + cnt] = (
                    x[row, warmup_pts - 1 : warmtrain_pts - 1]
                    * x[column, warmup_pts - 1 : warmtrain_pts - 1]
                )
                cnt += 1
    
        # ridge regression: train W_out to map out_train to Lorenz[t] - Lorenz[t - 1]
        W_out = (
            (x[0:d, warmup_pts:warmtrain_pts] - x[0:d, warmup_pts - 1 : warmtrain_pts - 1])
            @ out_train[:, :].T
            @ np.linalg.pinv(
                out_train[:, :] @ out_train[:, :].T + ridge_param * np.identity(dtot)
            )
        )
    
        # create a place to store feature vectors for prediction
        out_test = np.ones(dtot)  # full feature vector
        x_test = np.zeros((dlin, testtime_pts))  # linear part
    
        # copy over initial linear feature vector
        x_test[:, 0] = x[:, warmtrain_pts - 1]
    
        # do prediction
        for j in range(testtime_pts - 1):
            # copy linear part into whole feature vector
            out_test[1 : dlin + 1] = x_test[:, j]  # shift by one for constant
            # fill in the non-linear part
            cnt = 0
            for row in range(dlin):
                for column in range(row, dlin):
                    # shift by one for constant
                    out_test[dlin + 1 + cnt] = x_test[row, j] * x_test[column, j]
                    cnt += 1
            # fill in the delay taps of the next state
            x_test[d:dlin, j + 1] = x_test[0 : (dlin - d), j]
            # do a prediction
            x_test[0:d, j + 1] = x_test[0:d, j] + W_out @ out_test[:]
        return x_test[0:d, 1:]
    
    
    # note transposed from the opposite of my usual shape
    data_pts = 7000
    series = 3
    forecast_length = 10
    df_sine = load_sine(long=False, shape=(data_pts, series)).transpose().to_numpy()
    df_sine_train = df_sine[:, :-10]
    df_sine_test = df_sine[:, -10:]
    prediction_sine = predict_reservoir(df_sine_train, forecast_length=forecast_length, warmup_pts=150, k=2, ridge_param=2.5e-6)
    print(f"sine MAE {np.mean(np.abs(df_sine_test - prediction_sine))}")
    
    df_linear = load_linear(long=False, shape=(data_pts, series)).transpose().to_numpy()
    df_linear_train = df_linear[:, :-10]
    df_linear_test = df_linear[:, -10:]
    prediction_linear = predict_reservoir(df_linear_train, forecast_length=forecast_length, warmup_pts=150, k=2, ridge_param=2.5e-6)
    print(f"linear MAE {np.mean(np.abs(df_linear_test - prediction_linear))}")
    
    
    opened by winedarksea 2
  • Link to your paper

    Link to your paper

    I'm documenting here the link to your paper. I couldn't find it in the readme:


    Next generation reservoir computing

    Daniel J. Gauthier, Erik Bollt, Aaron Griffith & Wendson A. S. Barbosa 
    

    Nature Communications volume 12, Article number: 5564 (2021) https://www.nature.com/articles/s41467-021-25801-2

    opened by impredicative 1
Releases(v1.0)
Owner
OSU QuantInfo Lab
Daniel Gauthier's Research Group
OSU QuantInfo Lab
这是一个利用facenet和retinaface实现人脸识别的库,可以进行在线的人脸识别。

Facenet+Retinaface:人脸识别模型在Pytorch当中的实现 目录 注意事项 Attention 所需环境 Environment 文件下载 Download 预测步骤 How2predict 参考资料 Reference 注意事项 该库中包含了两个网络,分别是retinaface和

Bubbliiiing 102 Dec 30, 2022
[BMVC2021] The official implementation of "DomainMix: Learning Generalizable Person Re-Identification Without Human Annotations"

DomainMix [BMVC2021] The official implementation of "DomainMix: Learning Generalizable Person Re-Identification Without Human Annotations" [paper] [de

Wenhao Wang 17 Dec 20, 2022
Object detection using yolo-tiny model and opencv used as backend

Object detection Algorithm used : Yolo algorithm Backend : opencv Library required: opencv = 4.5.4-dev' Quick Overview about structure 1) main.py Load

2 Jul 06, 2022
Implementation of ICCV19 Paper "Learning Two-View Correspondences and Geometry Using Order-Aware Network"

OANet implementation Pytorch implementation of OANet for ICCV'19 paper "Learning Two-View Correspondences and Geometry Using Order-Aware Network", by

Jiahui Zhang 225 Dec 05, 2022
Official implementation of ACTION-Net: Multipath Excitation for Action Recognition (CVPR'21).

ACTION-Net Official implementation of ACTION-Net: Multipath Excitation for Action Recognition (CVPR'21). Getting Started EgoGesture data folder struct

V-Sense 171 Dec 26, 2022
A (PyTorch) imbalanced dataset sampler for oversampling low frequent classes and undersampling high frequent ones.

Imbalanced Dataset Sampler Introduction In many machine learning applications, we often come across datasets where some types of data may be seen more

Ming 2k Jan 08, 2023
Eth brownie struct encoding example

eth-brownie struct encoding example Overview This repository contains an example of encoding a struct, so that it can be used in a function call, usin

Ittai Svidler 2 Mar 04, 2022
code and data for paper "GIANT: Scalable Creation of a Web-scale Ontology"

GIANT Code and data for paper "GIANT: Scalable Creation of a Web-scale Ontology" https://arxiv.org/pdf/2004.02118.pdf Please cite our paper if this pr

Excalibur 39 Dec 29, 2022
Global Filter Networks for Image Classification

Global Filter Networks for Image Classification Created by Yongming Rao, Wenliang Zhao, Zheng Zhu, Jiwen Lu, Jie Zhou This repository contains PyTorch

Yongming Rao 273 Dec 26, 2022
Code, pre-trained models and saliency results for the paper "Boosting RGB-D Saliency Detection by Leveraging Unlabeled RGB Images".

Boosting RGB-D Saliency Detection by Leveraging Unlabeled RGB This repository is the official implementation of the paper. Our results comming soon in

Xiaoqiang Wang 8 May 22, 2022
Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network

Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network Paddle-PANet 目录 结果对比 论文介绍 快速安装 结果对比 CTW1500 Method Backbone Fine

7 Aug 08, 2022
Denoising Diffusion Probabilistic Models

Denoising Diffusion Probabilistic Models Jonathan Ho, Ajay Jain, Pieter Abbeel Paper: https://arxiv.org/abs/2006.11239 Website: https://hojonathanho.g

Jonathan Ho 1.5k Jan 08, 2023
Lip Reading - Cross Audio-Visual Recognition using 3D Convolutional Neural Networks

Lip Reading - Cross Audio-Visual Recognition using 3D Convolutional Neural Networks - Official Project Page This repository contains the code develope

Amirsina Torfi 1.7k Dec 18, 2022
Azua - build AI algorithms to aid efficient decision-making with minimum data requirements.

Project Azua 0. Overview Many modern AI algorithms are known to be data-hungry, whereas human decision-making is much more efficient. The human can re

Microsoft 197 Jan 06, 2023
PyTorch Implementation of Temporal Output Discrepancy for Active Learning, ICCV 2021

Temporal Output Discrepancy for Active Learning PyTorch implementation of Semi-Supervised Active Learning with Temporal Output Discrepancy, ICCV 2021.

Siyu Huang 33 Dec 06, 2022
Plug and play transformer you can find network structure and official complete code by clicking List

Plug-and-play Module Plug and play transformer you can find network structure and official complete code by clicking List The following is to quickly

8 Mar 27, 2022
Self-labelling via simultaneous clustering and representation learning. (ICLR 2020)

Self-labelling via simultaneous clustering and representation learning 🆗 🆗 🎉 NEW models (20th August 2020): Added standard SeLa pretrained torchvis

Yuki M. Asano 469 Jan 02, 2023
An API-first distributed deployment system of deep learning models using timeseries data to analyze and predict systems behaviour

Gordo Building thousands of models with timeseries data to monitor systems. Table of content About Examples Install Uninstall Developer manual How to

Equinor 26 Dec 27, 2022
Rainbow: Combining Improvements in Deep Reinforcement Learning

Rainbow Rainbow: Combining Improvements in Deep Reinforcement Learning [1]. Results and pretrained models can be found in the releases. DQN [2] Double

Kai Arulkumaran 1.4k Dec 29, 2022
Automatically creates genre collections for your Plex media

Plex Auto Genres Plex Auto Genres is a simple script that will add genre collection tags to your media making it much easier to search for genre speci

Shane Israel 63 Dec 31, 2022