Cherche (search in French) allows you to create a neural search pipeline using retrievers and pre-trained language models as rankers.

Overview

Cherche

Neural search



Cherche (search in French) allows you to create a neural search pipeline using retrievers and pre-trained language models as rankers. Cherche is meant to be used with small to medium sized corpora. Cherche's main strength is its ability to build diverse and end-to-end pipelines.

Alt text

Installation 🤖

pip install cherche

To install the development version:

pip install git+https://github.com/raphaelsty/cherche

Documentation 📜

Documentation is available here. It provides details about retrievers, rankers, pipelines, question answering, summarization, and examples.

QuickStart 💨

Documents 📑

Cherche allows findings the right document within a list of objects. Here is an example of a corpus.

from cherche import data

documents = data.load_towns()

documents[:3]
[{'id': 0,
  'title': 'Paris',
  'url': 'https://en.wikipedia.org/wiki/Paris',
  'article': 'Paris is the capital and most populous city of France.'},
 {'id': 1,
  'title': 'Paris',
  'url': 'https://en.wikipedia.org/wiki/Paris',
  'article': "Since the 17th century, Paris has been one of Europe's major centres of science, and arts."},
 {'id': 2,
  'title': 'Paris',
  'url': 'https://en.wikipedia.org/wiki/Paris',
  'article': 'The City of Paris is the centre and seat of government of the region and province of Île-de-France.'
  }]

Retriever ranker 🔍

Here is an example of a neural search pipeline composed of a TfIdf that quickly retrieves documents, followed by a ranking model. The ranking model sorts the documents produced by the retriever based on the semantic similarity between the query and the documents.

from cherche import data, retrieve, rank
from sentence_transformers import SentenceTransformer

# List of dicts
documents = data.load_towns()

# Retrieve on fields title and article
retriever = retrieve.TfIdf(key="id", on=["title", "article"], documents=documents, k=30)

# Rank on fields title and article
ranker = rank.Encoder(
    key = "id",
    on = ["title", "article"],
    encoder = SentenceTransformer("sentence-transformers/all-mpnet-base-v2").encode,
    k = 3,
    path = "encoder.pkl"
)

# Pipeline creation
search = retriever + ranker

search.add(documents=documents)

search("Bordeaux")
[{'id': 57, 'similarity': 0.69513476},
 {'id': 63, 'similarity': 0.6214991},
 {'id': 65, 'similarity': 0.61809057}]

Map the index to the documents to access their contents.

search += documents
search("Bordeaux")
[{'id': 57,
  'title': 'Bordeaux',
  'url': 'https://en.wikipedia.org/wiki/Bordeaux',
  'article': 'Bordeaux ( bor-DOH, French: [bɔʁdo] (listen); Gascon Occitan: Bordèu [buɾˈðɛw]) is a port city on the river Garonne in the Gironde department, Southwestern France.',
  'similarity': 0.69513476},
 {'id': 63,
  'title': 'Bordeaux',
  'url': 'https://en.wikipedia.org/wiki/Bordeaux',
  'article': 'The term "Bordelais" may also refer to the city and its surrounding region.',
  'similarity': 0.6214991},
 {'id': 65,
  'title': 'Bordeaux',
  'url': 'https://en.wikipedia.org/wiki/Bordeaux',
  'article': "Bordeaux is a world capital of wine, with its castles and vineyards of the Bordeaux region that stand on the hillsides of the Gironde and is home to the world's main wine fair, Vinexpo.",
  'similarity': 0.61809057}]

Retrieve 👻

Cherche provides different retrievers that filter input documents based on a query.

  • retrieve.Elastic
  • retrieve.TfIdf
  • retrieve.Lunr
  • retrieve.BM25Okapi
  • retrieve.BM25L
  • retrieve.Flash
  • retrieve.Encoder

Rank 🤗

Cherche rankers are compatible with SentenceTransformers models, Hugging Face sentence similarity models, Hugging Face zero shot classification models, and of course with your own models.

Summarization and question answering

Cherche provides modules dedicated to summarization and question answering. These modules are compatible with Hugging Face's pre-trained models and can be fully integrated into neural search pipelines.

Acknowledgements 👏

The BM25 models available in Cherche are wrappers around rank_bm25. Elastic retriever is a wrapper around Python Elasticsearch Client. TfIdf retriever is a wrapper around scikit-learn's TfidfVectorizer. Lunr retriever is a wrapper around Lunr.py. Flash retriever is a wrapper around FlashText. DPR and Encode rankers are wrappers dedicated to the use of the pre-trained models of SentenceTransformers in a neural search pipeline. ZeroShot ranker is a wrapper dedicated to the use of the zero-shot sequence classifiers of Hugging Face in a neural search pipeline.

See also 👀

Cherche is a minimalist solution and meets a need for modularity. Cherche is the way to go if you start with a list of documents as JSON with multiple fields to search on and want to create pipelines. Also ,Cherche is well suited for middle sized corpora.

Do not hesitate to look at Haystack, Jina, or TxtAi which offer very advanced solutions for neural search and are great.

Dev Team 💾

The Cherche dev team is made up of Raphaël Sourty and François-Paul Servant 🥳

Comments
  • Added spelling corrector object

    Added spelling corrector object

    Hello ! I added a spelling corrector base class as well as the original implementation of the Norvig spelling corrector. The spelling corrector can be fitted directly on the pipeline's documents with the '.add(documents)' method. I also provided an optional (defaults to False) external dictionary, the one originally used by Norvig.

    I have no issue updating my code for improvements, so feel free to suggest any modification !

    opened by NicolasBizzozzero 4
  • 0.0.5

    0.0.5

    Pull request for Cherche version 0.0.5

    • RAG: add RAG generator for open domain question answering
    • RapidFuzzy: New blazzing fast retriever
    • Retrievers: Provide similarities for each retriever
    • Union & Intersection: Keep similarity scores
    opened by raphaelsty 1
  • Batch processing

    Batch processing

    Retrieving documents with batch of queries can significantly speed up things. It is now available for few models using the development version via the batch method.

    Models involved are:

    • TfIdf retriever
    • Encoder retriever (milvus + faiss)
    • Encoder ranker (milvus)
    • DPR retriever (milvus + faiss)
    • DPR ranker (milvus)
    • Recommend retriever

    Batch is not yet compatible with pipelines.

    enhancement 
    opened by raphaelsty 0
  • Cherche 1.0.0

    Cherche 1.0.0

    Here is an essential update for Cherche. The update retains the previous API and is compatible with previous versions. 🥳

    Main additions:

    • Added compatibility with two new open-source retrievers: Meilisearch and TypeSense.
    • Compatibility with the Milvus index to use the retriever.Encoder and retriever.DPR models on massive corpora.
    • Compatibility with the Milvus index to store ranker embeddings in a database rather than in memory.
    • Progress bar when pre-computing embeddings by Encoder, DPR retrievers and Encoder, DPR rankers.
    • All pipelines (voting, intersection, concatenation) produce a similarity score. To do so, the pipeline object applies a softmax to normalize the scores, thus allowing us to "compare" the scores of two distinct models.
    • Integration of collaborative filtering models via adding a Recommend retriever and a Recommend ranker (indexation via Faiss and compatible with Milvus) to consider users' preferences in the search.
    opened by raphaelsty 0
  • "IndexError: index out of range in self "While adding documents to cherche pipeline

    I'm using a cherche pipline built of a tfidf retriever with a sentencetransformer ranker as follows : search = (retriever + ranker) While trying to add documents to the pipeline (search.add(documents=documents), I got this error :

    """/usr/local/lib/python3.7/dist-packages/torch/nn/functional.py in embedding(input, weight, padding_idx, max_norm, norm_type, scale_grad_by_freq, sparse) 2181 # remove once script supports set_grad_enabled 2182 no_grad_embedding_renorm(weight, input, max_norm, norm_type) -> 2183 return torch.embedding(weight, input, padding_idx, scale_grad_by_freq, sparse) 2184 2185

    IndexError: index out of range in self"""

    opened by delmetni 0
  • incomplete doc about metrics

    incomplete doc about metrics

    opened by fpservant 0
Releases(1.0.1)
  • 1.0.1(Oct 27, 2022)

  • 1.0.0(Oct 26, 2022)

    What's Changed

    Here is an essential update for Cherche! 🥳

    • Added compatibility with two new open-source retrievers: Meilisearch and TypeSense.
    • Compatibility with the Milvus index to use the retriever.Encoder and retriever.DPR models on massive corpora.
    • Compatibility with the Milvus index to store ranker embeddings in a database rather than in memory.
    • Progress bar when pre-computing embeddings by Encoder, DPR retrievers and Encoder, DPR rankers.
    • The path parameter is no longer used.
    • All pipelines (voting, intersection, concatenation) produce a similarity score. To do so, the pipeline object applies a softmax to normalize the scores, thus allowing us to "compare" the scores of two distinct models.
    • Integration of collaborative filtering models via adding a Recommend retriever and a Recommend ranker (indexation via Faiss and compatible with Milvus) to consider users' preferences in the search.

    Cherche is now fully compatible with large-scale corpora and deeply integrates collaborative filtering. Updates retains the previous API and is compatible with previous versions.

    Source code(tar.gz)
    Source code(zip)
  • 0.1.0(Jun 16, 2022)

    Added compatibility with the ONNX environment and quantization to significantly speed up sentence transformers and question answering models. 🏎

    It is now possible to choose the type of index for the Encoder and DPR retrievers in order to process the largest corpora while using the GPU.

    Source code(tar.gz)
    Source code(zip)
  • 0.0.9(Apr 13, 2022)

  • 0.0.8(Mar 7, 2022)

  • 0.0.7(Mar 7, 2022)

  • 0.0.6(Mar 3, 2022)

    • Update documentation
    • Update retriever Encoder and DPR, path is optionnal
    • Add deployment documentation
    • Update similarity type
    • Avoid round similarity
    Source code(tar.gz)
    Source code(zip)
  • 0.0.5(Feb 8, 2022)

    • Loading and Saving tutorial
    • Fuzzy retriever
    • Similarities everywhere (retrievers, union, intersection provide similarity scores)
    • RAG generation
    Source code(tar.gz)
    Source code(zip)
  • 0.0.4(Jan 20, 2022)

    Update of the encoder retriever and the DPR retriever. Documents in the Faiss index will not be duplicated. Query embeddings can now be pre-computed for ranker Encoder and ranker DPR to speed up evaluation without having to compute it again.

    Source code(tar.gz)
    Source code(zip)
  • 0.0.3(Jan 13, 2022)

  • 0.0.2(Jan 12, 2022)

    Update of the Cherche dependencies. The previous dependencies were too strict and restrictive as they were limited to a specific version for each package.

    Source code(tar.gz)
    Source code(zip)
Owner
Raphael Sourty
PhD Student @ IRIT and Renault
Raphael Sourty
100+ Chinese Word Vectors 上百种预训练中文词向量

Chinese Word Vectors 中文词向量 中文 This project provides 100+ Chinese Word Vectors (embeddings) trained with different representations (dense and sparse),

embedding 10.4k Jan 09, 2023
Convolutional 2D Knowledge Graph Embeddings resources

ConvE Convolutional 2D Knowledge Graph Embeddings resources. Paper: Convolutional 2D Knowledge Graph Embeddings Used in the paper, but do not use thes

Tim Dettmers 586 Dec 24, 2022
Perform sentiment analysis and keyword extraction on Craigslist listings

craiglist-helper synopsis Perform sentiment analysis and keyword extraction on Craigslist listings Background I love Craigslist. I've found most of my

Mark Musil 1 Nov 08, 2021
Web Scraping, Document Deduplication & GPT-2 Fine-tuning with a newly created scam dataset.

Web Scraping, Document Deduplication & GPT-2 Fine-tuning with a newly created scam dataset.

18 Nov 28, 2022
LOT: A Benchmark for Evaluating Chinese Long Text Understanding and Generation

LOT: A Benchmark for Evaluating Chinese Long Text Understanding and Generation Tasks | Datasets | LongLM | Baselines | Paper Introduction LOT is a ben

46 Dec 28, 2022
Code for paper "Which Training Methods for GANs do actually Converge? (ICML 2018)"

GAN stability This repository contains the experiments in the supplementary material for the paper Which Training Methods for GANs do actually Converg

Lars Mescheder 884 Nov 11, 2022
JaQuAD: Japanese Question Answering Dataset

JaQuAD: Japanese Question Answering Dataset for Machine Reading Comprehension (2022, Skelter Labs)

SkelterLabs 84 Dec 27, 2022
DeepAmandine is an artificial intelligence that allows you to talk to it for hours, you won't know the difference.

DeepAmandine This is an artificial intelligence based on GPT-3 that you can chat with, it is very nice and makes a lot of jokes. We wish you a good ex

BuyWithCrypto 3 Apr 19, 2022
COVID-19 Chatbot with Rasa 2.0: open source conversational AI

COVID-19 chatbot implementation with Rasa open source 2.0, conversational AI framework.

Aazim Parwaz 1 Dec 23, 2022
Shellcode antivirus evasion framework

Schrodinger's Cat Schrodinger'sCat is a Shellcode antivirus evasion framework Technical principle Please visit my blog https://idiotc4t.com/ How to us

idiotc4t 27 Jul 09, 2022
Sinkhorn Transformer - Practical implementation of Sparse Sinkhorn Attention

Sinkhorn Transformer This is a reproduction of the work outlined in Sparse Sinkhorn Attention, with additional enhancements. It includes a parameteriz

Phil Wang 217 Nov 25, 2022
Implementation of Multistream Transformers in Pytorch

Multistream Transformers Implementation of Multistream Transformers in Pytorch. This repository deviates slightly from the paper, where instead of usi

Phil Wang 47 Jul 26, 2022
The official repository of the ISBI 2022 KNIGHT Challenge

KNIGHT The official repository holding the data for the ISBI 2022 KNIGHT Challenge About The KNIGHT Challenge asks teams to develop models to classify

Nicholas Heller 4 Jan 22, 2022
A library for end-to-end learning of embedding index and retrieval model

Poeem Poeem is a library for efficient approximate nearest neighbor (ANN) search, which has been widely adopted in industrial recommendation, advertis

54 Dec 21, 2022
Yet Another Compiler Visualizer

yacv: Yet Another Compiler Visualizer yacv is a tool for visualizing various aspects of typical LL(1) and LR parsers. Check out demo on YouTube to see

Ashutosh Sathe 129 Dec 17, 2022
Jupyter Notebook tutorials on solving real-world problems with Machine Learning & Deep Learning using PyTorch

Jupyter Notebook tutorials on solving real-world problems with Machine Learning & Deep Learning using PyTorch. Topics: Face detection with Detectron 2, Time Series anomaly detection with LSTM Autoenc

Venelin Valkov 1.8k Dec 31, 2022
Addon for adding subtitle files to blender VSE as Text sequences. Using pysub2 python module.

Import Subtitles for Blender VSE Addon for adding subtitle files to blender VSE as Text sequences. Using pysub2 python module. Supported formats by py

4 Feb 27, 2022
This project consists of data analysis and data visualization (done using python)of all IPL seasons from 2008 to 2019 and answering the most asked questions about the IPL.

IPL-data-analysis This project consists of data analysis and data visualization of all IPL seasons from 2008 to 2019 and answering the most asked ques

Sivateja A T 2 Feb 08, 2022
Silero Models: pre-trained speech-to-text, text-to-speech models and benchmarks made embarrassingly simple

Silero Models: pre-trained speech-to-text, text-to-speech models and benchmarks made embarrassingly simple

Alexander Veysov 3.2k Dec 31, 2022
Generate vector graphics from a textual caption

VectorAscent: Generate vector graphics from a textual description Example "a painting of an evergreen tree" python text_to_painting.py --prompt "a pai

Ajay Jain 97 Dec 15, 2022