A code implementation of AC-GC: Activation Compression with Guaranteed Convergence, in NeurIPS 2021.

Related tags

Deep Learningacgc
Overview

Code For AC-GC: Lossy Activation Compression with Guaranteed Convergence

This code is intended to be used as a supplemental material for submission to NeurIPS 2021.

DO NOT DISTRIBUTE

Setup

This code is tested on Ubuntu 20.04 with Python 3 and CUDA 10.1. Other cuda versions can be used by modifying the cupy version in requirements.txt, provided that CuDNN is installed.

# Set up environment
python3 -m venv
source venv/bin/activate
pip3 install -r requirements.txt

Training

Configurations are provided for CIFAR10/ResNet50 in the acgc/configs folder.

source venv/bin/activate
cd acgc
./configs/rn50_baseline.sh

To replicate GridQuantZ results from the paper, you additionally need to:

  • Run quantz with bitwidths of 2, 4, 6, 8, 10, 12, 14, and 16 bits, and run each 5 times
  • Select the result with the lowest bitwidth and average accuracy no less than the baseline - 0.1%

Evaluation

Evaluation with the CIFAR10 test dataset is run during training. The 'validation/main/accuracy' entry in the report.txt or log contains test accuracy throughout training.

Pre-trained Models

You can download pre-trained snapshots for each config from acgc/configs.

These snapshots can be run using

python3 train_cifar_act_error.py ... --resume <snapshot_file>

Results

We have added reports and logs for each configuration under acgc/results. The logs are associated with each snapshot, above.

A summarized output from these runs is:

Configuration Best Test Acc Average Bits Epochs
rn50_baseline 95.16 % N/A 300
rn50_quant_8bit 94.90 % 8.000 300
rn50_quantz_8bit 94.82 % 7.426 300
rn50_autoquant 94.73 % 7.305 300
rn50_autoquantz 94.91 % 6.694 300

Code Layout

Argument parsing and model initialization are handled in acgc/cifar.py and acgc/train_cifar_act_error.py

Modifications to the training loop are in acgc/common/compression/compressed_momentum_sgd.py.

The baseline fixpoint implementation is in acgc/common/compression/quant.py.

The AutoQuant implementation, and error bound calculation are in acgc/common/compression/autoquant.py.

Gradient and parameter estimation are performed in acgc/common/compression/grad_approx.py

Owner
Dave Evans
Student at University of British Columbia. Interests: FPGAs, Accelerators, Computer Architecture, Machine Learning
Dave Evans
OstrichRL: A Musculoskeletal Ostrich Simulation to Study Bio-mechanical Locomotion.

OstrichRL This is the repository accompanying the paper OstrichRL: A Musculoskeletal Ostrich Simulation to Study Bio-mechanical Locomotion. It contain

Vittorio La Barbera 51 Nov 17, 2022
Angle data is a simple data type.

angledat Angle data is a simple data type. Installing + using Put angledat.py in the main dir of your project. Import it and use. Comments Comments st

1 Jan 05, 2022
Continuous Augmented Positional Embeddings (CAPE) implementation for PyTorch

PyTorch implementation of Continuous Augmented Positional Embeddings (CAPE), by Likhomanenko et al. Enhance your Transformer positional embeddings with easy-to-use augmentations!

Guillermo Cámbara 26 Dec 13, 2022
Classifying cat and dog images using Kaggle dataset

PyTorch Image Classification Classifies an image as containing either a dog or a cat (using Kaggle's public dataset), but could easily be extended to

Robert Coleman 74 Nov 22, 2022
Julia package for multiway (inverse) covariance estimation.

TensorGraphicalModels TensorGraphicalModels.jl is a suite of Julia tools for estimating high-dimensional multiway (tensor-variate) covariance and inve

Wayne Wang 3 Sep 23, 2022
This repository implements WGAN_GP.

Image_WGAN_GP This repository implements WGAN_GP. Image_WGAN_GP This repository uses wgan to generate mnist and fashionmnist pictures. Firstly, you ca

Lieon 6 Dec 10, 2021
ManipNet: Neural Manipulation Synthesis with a Hand-Object Spatial Representation - SIGGRAPH 2021

ManipNet: Neural Manipulation Synthesis with a Hand-Object Spatial Representation - SIGGRAPH 2021 Dataset Code Demos Authors: He Zhang, Yuting Ye, Tak

HE ZHANG 194 Dec 06, 2022
Runtime type annotations for the shape, dtype etc. of PyTorch Tensors.

torchtyping Type annotations for a tensor's shape, dtype, names, ... Turn this: def batch_outer_product(x: torch.Tensor, y: torch.Tensor) - torch.Ten

Patrick Kidger 1.2k Jan 03, 2023
Unofficial implementation of the ImageNet, CIFAR 10 and SVHN Augmentation Policies learned by AutoAugment using pillow

AutoAugment - Learning Augmentation Policies from Data Unofficial implementation of the ImageNet, CIFAR10 and SVHN Augmentation Policies learned by Au

Philip Popien 1.3k Jan 02, 2023
Just Go with the Flow: Self-Supervised Scene Flow Estimation

Just Go with the Flow: Self-Supervised Scene Flow Estimation Code release for the paper Just Go with the Flow: Self-Supervised Scene Flow Estimation,

Himangi Mittal 50 Nov 22, 2022
LowRankModels.jl is a julia package for modeling and fitting generalized low rank models.

LowRankModels.jl LowRankModels.jl is a Julia package for modeling and fitting generalized low rank models (GLRMs). GLRMs model a data array by a low r

Madeleine Udell 183 Dec 17, 2022
HiddenMarkovModel implements hidden Markov models with Gaussian mixtures as distributions on top of TensorFlow

Class HiddenMarkovModel HiddenMarkovModel implements hidden Markov models with Gaussian mixtures as distributions on top of TensorFlow 2.0 Installatio

Susara Thenuwara 2 Nov 03, 2021
Python script to download the celebA-HQ dataset from google drive

download-celebA-HQ Python script to download and create the celebA-HQ dataset. WARNING from the author. I believe this script is broken since a few mo

133 Dec 21, 2022
Self-Supervised Pre-Training for Transformer-Based Person Re-Identification

Self-Supervised Pre-Training for Transformer-Based Person Re-Identification [pdf] The official repository for Self-Supervised Pre-Training for Transfo

Hao Luo 116 Jan 04, 2023
Checkout some cool self-projects you can try your hands on to curb your boredom this December!

SoC-Winter Checkout some cool self-projects you can try your hands on to curb your boredom this December! These are short projects that you can do you

Web and Coding Club, IIT Bombay 29 Nov 08, 2022
Using VideoBERT to tackle video prediction

VideoBERT This repo reproduces the results of VideoBERT (https://arxiv.org/pdf/1904.01766.pdf). Inspiration was taken from https://github.com/MDSKUL/M

75 Dec 14, 2022
Problem-943.-ACMP - Problem 943. ACMP

Problem-943.-ACMP В "main.py" расположен вариант моего решения задачи 943 с серв

Konstantin Dyomshin 2 Aug 19, 2022
A PyTorch implementation of "Graph Classification Using Structural Attention" (KDD 2018).

GAM ⠀⠀ A PyTorch implementation of Graph Classification Using Structural Attention (KDD 2018). Abstract Graph classification is a problem with practic

Benedek Rozemberczki 259 Dec 05, 2022
UI2I via StyleGAN2 - Unsupervised image-to-image translation method via pre-trained StyleGAN2 network

We proposed an unsupervised image-to-image translation method via pre-trained StyleGAN2 network. paper: Unsupervised Image-to-Image Translation via Pr

208 Dec 30, 2022
Code repository for the paper "Doubly-Trained Adversarial Data Augmentation for Neural Machine Translation" with instructions to reproduce the results.

Doubly Trained Neural Machine Translation System for Adversarial Attack and Data Augmentation Languages Experimented: Data Overview: Source Target Tra

Steven Tan 1 Aug 18, 2022