ANN model for prediction a spatio-temporal distribution of supercooled liquid in mixed-phase clouds using Doppler cloud radar spectra.

Related tags

Deep LearningVoodoo
Overview

Release DOI MIT License Twitter


Logo

VOODOO

Revealing supercooled liquid beyond lidar attenuation
Explore the docs »

Report Bug · Request Feature

Table of Contents
  1. About The Project
  2. Getting Started
  3. Usage
  4. Roadmap
  5. Contributing
  6. License
  7. Contact
  8. Acknowledgments

About The Project VOODOO

Machine learning approach using a convolutional neural network (CNN) classifier to relate Doppler spectra morphologies to the presence of (supercooled) liquid cloud droplets in mixed-phase clouds. Preprint will be available soon!

The release version provides the pre-trained machine learning model. Predictions are made by providing a list of Doppler radar time-spectrograms with dimensions:

  • number of spectral bins = 256
  • number of time steps = 6 (equivalent to 30 sec of observations)

The model was trained on RPG-FMCW94 data collected during DACAPO-PESO, therefore we recommend using this device for analysis. Supervision and validiation is provided by the CloudnetPy target classification and detection status.

Two examples are provided:

  • RPG-FMCW94 Doppler cloud radar Voodoo_predictor_RPG-FMCW94.ipynb test data is provided in the examples_data folder. The script requires a (hourly) LV0 binary file from RPG-FMCW94 and the corresponding Cloundet categorization file (for quicklooks and temporal resolution).
  • for KAZR Doppler cloud radar: Voodoo_predictor_KAZR.ipynb
  • help me test and add more devices :)

The CNN will ultimately be a feature within the Cloudnet processing suite.

Some examples of enhancend Cloudnet mixed-phase detection

previews.png

(back to top)

Getting Started

The examples given use hourly radar spectra files in there specific file formats, i.e. LV0 binaries form RPG-FMCW94 and NetCDF files from KAZR. Th Cloudnet categorization file provides the temporal resolution where the high resolution radar profiels are mappend onto the 30 sec Cloudnet grid. Additionately, radar reflectivity and attenuated backscatter coefficient are plotted.

Installation

Below is an example of how run the example script, which prepares the data, makes predictions and plots quicklooks. This method relies on external dependencies such as torch, xarray and others (see setup.py).

  1. Clone the repo

    git clone https://github.com/remsens-lim/Voodoo.git
  2. Install the package

    python setup.py install

(back to top)

Examples

Use this space to show useful examples of how a project can be used. Additional screenshots, code examples and demos work well in this space. You may also link to more resources.

  1. Open jupyter notebook
    jupyter notebook
  2. Open one of the example files Voodoo_predictor_KAZR.ipynbor Voodoo_predictor_RPG-FMCW94.ipynb to review the processing chain.

(back to top)

Roadmap

  • Released version 1
  • Add Tests
  • ???

See the open issues for a full list of proposed features (and known issues).

(back to top)

Contributing

Any contributions you make are greatly appreciated.

If you have a suggestion that would make this better, please fork the repo and create a pull request. You can also simply open an issue with the tag "enhancement". Don't forget to give the project a star! Thanks again!

  1. Fork the Project
  2. Create your Feature Branch (git checkout -b feature/AmazingFeature)
  3. Commit your Changes (git commit -m 'Add some AmazingFeature')
  4. Push to the Branch (git push origin feature/AmazingFeature)
  5. Open a Pull Request

(back to top)

License

Distributed under the MIT License. See LICENSE for more information.

(back to top)

Contact

Willi Schimmel - @KarlJohnsonnn - [email protected]

Project Link: https://github.com/remsens-lim/Voodoo

(back to top)

Acknowledgments

Special thanks for templates and help during implementation.

(back to top)

You might also like...
Learning Spatio-Temporal Transformer for Visual Tracking
Learning Spatio-Temporal Transformer for Visual Tracking

STARK The official implementation of the paper Learning Spatio-Temporal Transformer for Visual Tracking Hiring research interns for visual transformer

Digital Twin Mobility Profiling: A Spatio-Temporal Graph Learning Approach

Digital Twin Mobility Profiling: A Spatio-Temporal Graph Learning Approach This is the implementation of traffic prediction code in DTMP based on PyTo

Self-supervised spatio-spectro-temporal represenation learning for EEG analysis

EEG-Oriented Self-Supervised Learning and Cluster-Aware Adaptation This repository provides a tensorflow implementation of a submitted paper: EEG-Orie

[CVPR 2022 Oral] TubeDETR: Spatio-Temporal Video Grounding with Transformers

TubeDETR: Spatio-Temporal Video Grounding with Transformers Website • STVG Demo • Paper This repository provides the code for our paper. This includes

Radar-to-Lidar: Heterogeneous Place Recognition via Joint Learning
Radar-to-Lidar: Heterogeneous Place Recognition via Joint Learning

radar-to-lidar-place-recognition This page is the coder of a pre-print, implemented by PyTorch. If you have some questions on this project, please fee

Fuse radar and camera for detection
Fuse radar and camera for detection

SAF-FCOS: Spatial Attention Fusion for Obstacle Detection using MmWave Radar and Vision Sensor This project hosts the code for implementing the SAF-FC

Liquid Warping GAN with Attention: A Unified Framework for Human Image Synthesis
Liquid Warping GAN with Attention: A Unified Framework for Human Image Synthesis

Liquid Warping GAN with Attention: A Unified Framework for Human Image Synthesis, including human motion imitation, appearance transfer, and novel view synthesis. Currently the paper is under review of IEEE TPAMI. It is an extension of our previous ICCV project impersonator, and it has a more powerful ability in generalization and produces higher-resolution results (512 x 512, 1024 x 1024) than the previous ICCV version.

Cascaded Deep Video Deblurring Using Temporal Sharpness Prior and Non-local Spatial-Temporal Similarity
Cascaded Deep Video Deblurring Using Temporal Sharpness Prior and Non-local Spatial-Temporal Similarity

This repository is the official PyTorch implementation of Cascaded Deep Video Deblurring Using Temporal Sharpness Prior and Non-local Spatial-Temporal Similarity

CVPR2021: Temporal Context Aggregation Network for Temporal Action Proposal Refinement
CVPR2021: Temporal Context Aggregation Network for Temporal Action Proposal Refinement

Temporal Context Aggregation Network - Pytorch This repo holds the pytorch-version codes of paper: "Temporal Context Aggregation Network for Temporal

Releases(v1.0.0)
Owner
remsens-lim
Leipzig Institute for Meteorology Remote-Sensing and the Arctic Climate Systems
remsens-lim
Camera ready code repo for the NeuRIPS 2021 paper: "Impression learning: Online representation learning with synaptic plasticity".

Impression-Learning-Camera-Ready Camera ready code repo for the NeuRIPS 2021 paper: "Impression learning: Online representation learning with synaptic

2 Feb 09, 2022
Taichi Course Homework Template

太极图形课S1-标题部分 这个作业未来或将是你的开源项目,标题的内容可以来自作业中的核心关键词,让读者一眼看出你所完成的工作/做出的好玩demo 如果暂时未想好,起名时可以参考“太极图形课S1-xxx作业” 如下是作业(项目)展开说明的方法,可以帮大家理清思路,并且也对读者非常友好,请小伙伴们多多参

TaichiCourse 30 Nov 19, 2022
a reimplementation of Optical Flow Estimation using a Spatial Pyramid Network in PyTorch

pytorch-spynet This is a personal reimplementation of SPyNet [1] using PyTorch. Should you be making use of this work, please cite the paper according

Simon Niklaus 269 Jan 02, 2023
Final project code: Implementing MAE with downscaled encoders and datasets, for ESE546 FA21 at University of Pennsylvania

546 Final Project: Masked Autoencoder Haoran Tang, Qirui Wu 1. Training To train the network, please run mae_pretraining.py. Please modify folder path

Haoran Tang 0 Apr 22, 2022
Poisson Surface Reconstruction for LiDAR Odometry and Mapping

Poisson Surface Reconstruction for LiDAR Odometry and Mapping Surfels TSDF Our Approach Table: Qualitative comparison between the different mapping te

Photogrammetry & Robotics Bonn 305 Dec 21, 2022
Official PyTorch Implementation of Rank & Sort Loss [ICCV2021]

Rank & Sort Loss for Object Detection and Instance Segmentation The official implementation of Rank & Sort Loss. Our implementation is based on mmdete

Kemal Oksuz 229 Dec 20, 2022
Metric learning algorithms in Python

metric-learn: Metric Learning in Python metric-learn contains efficient Python implementations of several popular supervised and weakly-supervised met

1.3k Dec 28, 2022
Selene is a Python library and command line interface for training deep neural networks from biological sequence data such as genomes.

Selene is a Python library and command line interface for training deep neural networks from biological sequence data such as genomes.

Troyanskaya Laboratory 323 Jan 01, 2023
Repository for the paper "PoseAug: A Differentiable Pose Augmentation Framework for 3D Human Pose Estimation", CVPR 2021.

PoseAug: A Differentiable Pose Augmentation Framework for 3D Human Pose Estimation Code repository for the paper: PoseAug: A Differentiable Pose Augme

Pyjcsx 328 Dec 17, 2022
Semi-supervised Transfer Learning for Image Rain Removal. In CVPR 2019.

Semi-supervised Transfer Learning for Image Rain Removal This package contains the Python implementation of "Semi-supervised Transfer Learning for Ima

Wei Wei 59 Dec 26, 2022
Tgbox-bench - Simple TGBOX upload speed benchmark

TGBOX Benchmark This script will benchmark upload speed to TGBOX storage. Build

Non 1 Jan 09, 2022
SalGAN: Visual Saliency Prediction with Generative Adversarial Networks

SalGAN: Visual Saliency Prediction with Adversarial Networks Junting Pan Cristian Canton Ferrer Kevin McGuinness Noel O'Connor Jordi Torres Elisa Sayr

Image Processing Group - BarcelonaTECH - UPC 347 Nov 22, 2022
SatelliteNeRF - PyTorch-based Neural Radiance Fields adapted to satellite domain

SatelliteNeRF PyTorch-based Neural Radiance Fields adapted to satellite domain.

Kai Zhang 46 Nov 20, 2022
RETRO-pytorch - Implementation of RETRO, Deepmind's Retrieval based Attention net, in Pytorch

RETRO - Pytorch (wip) Implementation of RETRO, Deepmind's Retrieval based Attent

Phil Wang 556 Jan 04, 2023
CS506-Spring2022 - Code and Slides for Boston University CS 506

CS 506 - Computational Tools for Data Science Code, slides, and notes for Boston

Lance Galletti 17 May 06, 2022
Unofficial implementation of Proxy Anchor Loss for Deep Metric Learning

Proxy Anchor Loss for Deep Metric Learning Unofficial pytorch, tensorflow and mxnet implementations of Proxy Anchor Loss for Deep Metric Learning. Not

Geonmo Gu 3 Jun 09, 2021
2020 CCF大数据与计算智能大赛-非结构化商业文本信息中隐私信息识别-第7名方案

2020CCF-NER 2020 CCF大数据与计算智能大赛-非结构化商业文本信息中隐私信息识别-第7名方案 bert base + flat + crf + fgm + swa + pu learning策略 + clue数据集 = test1单模0.906 词向量

67 Oct 19, 2022
Fast Differentiable Matrix Sqrt Root

Official Pytorch implementation of ICLR 22 paper Fast Differentiable Matrix Square Root

YueSong 42 Dec 30, 2022
yolov5 deepsort 行人 车辆 跟踪 检测 计数

yolov5 deepsort 行人 车辆 跟踪 检测 计数 实现了 出/入 分别计数。 默认是 南/北 方向检测,若要检测不同位置和方向,可在 main.py 文件第13行和21行,修改2个polygon的点。 默认检测类别:行人、自行车、小汽车、摩托车、公交车、卡车。 检测类别可在 detect

554 Dec 30, 2022