Meta Learning for Semi-Supervised Few-Shot Classification

Overview

few-shot-ssl-public

Code for paper Meta-Learning for Semi-Supervised Few-Shot Classification. [arxiv]

Dependencies

  • cv2
  • numpy
  • pandas
  • python 2.7 / 3.5+
  • tensorflow 1.3+
  • tqdm

Our code is tested on Ubuntu 14.04 and 16.04.

Setup

First, designate a folder to be your data root:

export DATA_ROOT={DATA_ROOT}

Then, set up the datasets following the instructions in the subsections.

Omniglot

[Google Drive] (9.3 MB)

# Download and place "omniglot.tar.gz" in "$DATA_ROOT/omniglot".
mkdir -p $DATA_ROOT/omniglot
cd $DATA_ROOT/omniglot
mv ~/Downloads/omniglot.tar.gz .
tar -xzvf omniglot.tar.gz
rm -f omniglot.tar.gz

miniImageNet

[Google Drive] (1.1 GB)

Update: Python 2 and 3 compatible version: [train] [val] [test]

# Download and place "mini-imagenet.tar.gz" in "$DATA_ROOT/mini-imagenet".
mkdir -p $DATA_ROOT/mini-imagenet
cd $DATA_ROOT/mini-imagenet
mv ~/Downloads/mini-imagenet.tar.gz .
tar -xzvf mini-imagenet.tar.gz
rm -f mini-imagenet.tar.gz

tieredImageNet

[Google Drive] (12.9 GB)

# Download and place "tiered-imagenet.tar" in "$DATA_ROOT/tiered-imagenet".
mkdir -p $DATA_ROOT/tiered-imagenet
cd $DATA_ROOT/tiered-imagenet
mv ~/Downloads/tiered-imagenet.tar .
tar -xvf tiered-imagenet.tar
rm -f tiered-imagenet.tar

Note: Please make sure that the following hardware requirements are met before running tieredImageNet experiments.

  • Disk: 30 GB
  • RAM: 32 GB

Core Experiments

Please run the following scripts to reproduce the core experiments.

# Clone the repository.
git clone https://github.com/renmengye/few-shot-ssl-public.git
cd few-shot-ssl-public

# To train a model.
python run_exp.py --data_root $DATA_ROOT             \
                  --dataset {DATASET}                \
                  --label_ratio {LABEL_RATIO}        \
                  --model {MODEL}                    \
                  --results {SAVE_CKPT_FOLDER}       \
                  [--disable_distractor]

# To test a model.
python run_exp.py --data_root $DATA_ROOT             \
                  --dataset {DATASET}                \
                  --label_ratio {LABEL_RATIO}        \
                  --model {MODEL}                    \
                  --results {SAVE_CKPT_FOLDER}       \
                  --eval --pretrain {MODEL_ID}       \
                  [--num_unlabel {NUM_UNLABEL}]      \
                  [--num_test {NUM_TEST}]            \
                  [--disable_distractor]             \
                  [--use_test]
  • Possible {MODEL} options are basic, kmeans-refine, kmeans-refine-radius, and kmeans-refine-mask.
  • Possible {DATASET} options are omniglot, mini-imagenet, tiered-imagenet.
  • Use {LABEL_RATIO} 0.1 for omniglot and tiered-imagenet, and 0.4 for mini-imagenet.
  • Replace {MODEL_ID} with the model ID obtained from the training program.
  • Replace {SAVE_CKPT_FOLDER} with the folder where you save your checkpoints.
  • Add additional flags --num_unlabel 20 --num_test 20 for testing mini-imagenet and tiered-imagenet models, so that each episode contains 20 unlabeled images per class and 20 query images per class.
  • Add an additional flag --disable_distractor to remove all distractor classes in the unlabeled images.
  • Add an additional flag --use_test to evaluate on the test set instead of the validation set.
  • More commandline details see run_exp.py.

Simple Baselines for Few-Shot Classification

Please run the following script to reproduce a suite of baseline results.

python run_baseline_exp.py --data_root $DATA_ROOT    \
                           --dataset {DATASET}
  • Possible DATASET options are omniglot, mini-imagenet, tiered-imagenet.

Run over Multiple Random Splits

Please run the following script to reproduce results over 10 random label/unlabel splits, and test the model with different number of unlabeled items per episode. The default seeds are 0, 1001, ..., 9009.

python run_multi_exp.py --data_root $DATA_ROOT       \
                        --dataset {DATASET}          \
                        --label_ratio {LABEL_RATIO}  \
                        --model {MODEL}              \
                        [--disable_distractor]       \
                        [--use_test]
  • Possible MODEL options are basic, kmeans-refine, kmeans-refine-radius, and kmeans-refine-mask.
  • Possible DATASET options are omniglot, mini_imagenet, tiered_imagenet.
  • Use {LABEL_RATIO} 0.1 for omniglot and tiered-imagenet, and 0.4 for mini-imagenet.
  • Add an additional flag --disable_distractor to remove all distractor classes in the unlabeled images.
  • Add an additional flag --use_test to evaluate on the test set instead of the validation set.

Citation

If you use our code, please consider cite the following:

  • Mengye Ren, Eleni Triantafillou, Sachin Ravi, Jake Snell, Kevin Swersky, Joshua B. Tenenbaum, Hugo Larochelle and Richard S. Zemel. Meta-Learning for Semi-Supervised Few-Shot Classification. In Proceedings of 6th International Conference on Learning Representations (ICLR), 2018.
@inproceedings{ren18fewshotssl,
  author   = {Mengye Ren and 
              Eleni Triantafillou and 
              Sachin Ravi and 
              Jake Snell and 
              Kevin Swersky and 
              Joshua B. Tenenbaum and 
              Hugo Larochelle and 
              Richard S. Zemel},
  title    = {Meta-Learning for Semi-Supervised Few-Shot Classification},
  booktitle= {Proceedings of 6th International Conference on Learning Representations {ICLR}},
  year     = {2018},
}
Owner
Mengye Ren
Mengye Ren
TensorFlow2 Classification Model Zoo playing with TensorFlow2 on the CIFAR-10 dataset.

Training CIFAR-10 with TensorFlow2(TF2) TensorFlow2 Classification Model Zoo. I'm playing with TensorFlow2 on the CIFAR-10 dataset. Architectures LeNe

Chia-Hung Yuan 16 Sep 27, 2022
Rust bindings for the C++ api of PyTorch.

tch-rs Rust bindings for the C++ api of PyTorch. The goal of the tch crate is to provide some thin wrappers around the C++ PyTorch api (a.k.a. libtorc

Laurent Mazare 2.3k Dec 30, 2022
AdvStyle - Official PyTorch Implementation

AdvStyle - Official PyTorch Implementation Paper | Supp Discovering Interpretable Latent Space Directions of GANs Beyond Binary Attributes. Huiting Ya

Beryl 37 Oct 21, 2022
Deep Residual Networks with 1K Layers

Deep Residual Networks with 1K Layers By Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. Microsoft Research Asia (MSRA). Table of Contents Introduc

Kaiming He 856 Jan 06, 2023
A configurable, tunable, and reproducible library for CTR prediction

FuxiCTR This repo is the community dev version of the official release at huawei-noah/benchmark/FuxiCTR. Click-through rate (CTR) prediction is an cri

XUEPAI 397 Dec 30, 2022
A PyTorch implementation of DenseNet.

A PyTorch Implementation of DenseNet This is a PyTorch implementation of the DenseNet-BC architecture as described in the paper Densely Connected Conv

Brandon Amos 771 Dec 15, 2022
Framework for joint representation learning, evaluation through multimodal registration and comparison with image translation based approaches

CoMIR: Contrastive Multimodal Image Representation for Registration Framework 🖼 Registration of images in different modalities with Deep Learning 🤖

Methods for Image Data Analysis - MIDA 55 Dec 09, 2022
Fast and customizable reconnaissance workflow tool based on simple YAML based DSL.

Fast and customizable reconnaissance workflow tool based on simple YAML based DSL, with support of notifications and distributed workload of that work

Américo Júnior 3 Mar 11, 2022
The Submission for SIMMC 2.0 Challenge 2021

The Submission for SIMMC 2.0 Challenge 2021 challenge website Requirements python 3.8.8 pytorch 1.8.1 transformers 4.8.2 apex for multi-gpu nltk Prepr

5 Jul 26, 2022
Nicholas Lee 3 Jan 09, 2022
Tensorflow/Keras Plug-N-Play Deep Learning Models Compilation

DeepBay This project was created with the objective of compile Machine Learning Architectures created using Tensorflow or Keras. The architectures mus

Whitman Bohorquez 4 Sep 26, 2022
Official implementation of the paper "Light Field Networks: Neural Scene Representations with Single-Evaluation Rendering"

Light Field Networks Project Page | Paper | Data | Pretrained Models Vincent Sitzmann*, Semon Rezchikov*, William Freeman, Joshua Tenenbaum, Frédo Dur

Vincent Sitzmann 130 Dec 29, 2022
Collection of generative models in Tensorflow

tensorflow-generative-model-collections Tensorflow implementation of various GANs and VAEs. Related Repositories Pytorch version Pytorch version of th

3.8k Dec 30, 2022
thundernet ncnn

MMDetection_Lite 基于mmdetection 实现一些轻量级检测模型,安装方式和mmdeteciton相同 voc0712 voc 0712训练 voc2007测试 coco预训练 thundernet_voc_shufflenetv2_1.5 input shape mAP 320

DayBreak 39 Dec 05, 2022
Joint parameterization and fitting of stroke clusters

StrokeStrip: Joint Parameterization and Fitting of Stroke Clusters Dave Pagurek van Mossel1, Chenxi Liu1, Nicholas Vining1,2, Mikhail Bessmeltsev3, Al

Dave Pagurek 44 Dec 01, 2022
DyNet: The Dynamic Neural Network Toolkit

The Dynamic Neural Network Toolkit General Installation C++ Python Getting Started Citing Releases and Contributing General DyNet is a neural network

Chris Dyer's lab @ LTI/CMU 3.3k Jan 06, 2023
Unofficial implementation of Proxy Anchor Loss for Deep Metric Learning

Proxy Anchor Loss for Deep Metric Learning Unofficial pytorch, tensorflow and mxnet implementations of Proxy Anchor Loss for Deep Metric Learning. Not

Geonmo Gu 3 Jun 09, 2021
This repository contains the code for the CVPR 2021 paper "GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields"

GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields Project Page | Paper | Supplementary | Video | Slides | Blog | Talk If

1.1k Dec 30, 2022
Spatially-Adaptive Pixelwise Networks for Fast Image Translation, CVPR 2021

Image Translation with ASAPNets Spatially-Adaptive Pixelwise Networks for Fast Image Translation, CVPR 2021 Webpage | Paper | Video Installation insta

Tamar Rott Shaham 100 Dec 28, 2022
Using image super resolution models with vapoursynth and speeding them up with TensorRT

vs-RealEsrganAnime-tensorrt-docker Using image super resolution models with vapoursynth and speeding them up with TensorRT. Also a docker image since

4 Aug 23, 2022