In this project, we create and implement a deep learning library from scratch.

Related tags

Deep LearningARA
Overview

ARA

In this project, we create and implement a deep learning library from scratch.

Table of Contents

About The Project

Deep learning can be considered as a subset of machine learning. It is a field that is based on learning and improving on its own by examining computer algorithms. Deep learning works with artificial neural networks consisting of many layers. This project, which is creating a Deep Learning Library from scratch, can be further implemented in various kinds of projects that involve Deep Learning. Which include, but are not limited to applications in Image, Natural Language and Speech processing, among others.

Aim

To implement a deep learning library from scratch.

Tech Stack

Technologies used in the project:

  • Python and numpy, pandas, matplotlib
  • Google Colab

File Structure

.
├── code
|   └── main.py                                   #contains the main code for the library
├── resources                                     #Notes 
|   ├── ImprovingDeepNeuralNetworks
|   |   ├── images
|   |   |   ├── BatchvsMiniBatch.png
|   |   |   ├── Bias.png
|   |   |   └── EWG.png
|   |   └── notes.md
|   ├── Course1.md                               
|   ├── accuracy.jpg
|   ├── error.jpg
|   └── grad_des_graph.jpg
├── LICENSE.txt
├── ProjectReport.pdf                            #Project Report
└── README.md                                    #Readme

Approach

The approach of the project is to basically create a deep learning library, as stated before. The aim of the project was to implement various deep learning algorithms, in order to drive a deep neural network and hence,create a deep learning library, which is modular,and driven on user input so that it can be applied for various deep learning processes, and to train and test it against a model.

Theory

A neural network is a network or circuit of neurons, or in a modern sense, an artificial neural network, composed of artificial neurons or nodes.

There are different types of Neural Networks

  • Standard Neural Networks
  • Convolutional Neural Networks
  • Recurring Neural Networks

Loss Function:

Loss function is defined so as to see how good the output ŷ is compared to output label y.

Cost Function :

Cost Function quantifies the error between predicted values and expected values.

Gradient Descent : -

Gradient descent is a first-order iterative optimization algorithm for finding a local minimum of a differentiable function.

Getting Started

Prerequisites

  • Object oriented programming in Python

  • Linear Algebra

  • Basic knowledge of Neural Networks

  • Python 3.6 and above

    You can visit the Python Download Guide for the installation steps.

  • Install numpy next

pip install numpy

Installation

  1. Clone the repo
git clone gi[email protected]:aayushmehta123/sra_eklavya_deeplearning_library.git

Results

Result

Results obtained during training: error (where Y-axis represents the value of the cost function and X axis represents the number of iterations) accuracy (where Y-axis represents the accuracy of the prediction wrt the labels and X-axis represents the number of iterations)

Future Work

  • Short term
    • Adding class for normalization and regularization
  • Near Future
    • Addition of support for linear regression
    • Addition of classes for LSTM and GRU blocks
  • Future goal
    • Addition of algorithms to support CNN models.
    • Addition of more Machine Learning algorithms
    • Include algorithms to facilitate Image Recognition, Machine Translation and Natural Language Processing

Troubleshooting

  • Numpy library not working so we shifted workspace to colab

Contributors

Acknowledgements

Resources

License

Describe your License for your project.

MINERVA: An out-of-the-box GUI tool for offline deep reinforcement learning

MINERVA is an out-of-the-box GUI tool for offline deep reinforcement learning, designed for everyone including non-programmers to do reinforcement learning as a tool.

Takuma Seno 80 Nov 06, 2022
Code repo for "RBSRICNN: Raw Burst Super-Resolution through Iterative Convolutional Neural Network" (Machine Learning and the Physical Sciences workshop in NeurIPS 2021).

RBSRICNN: Raw Burst Super-Resolution through Iterative Convolutional Neural Network An official PyTorch implementation of the RBSRICNN network as desc

Rao Muhammad Umer 6 Nov 14, 2022
Unofficial Implementation of MLP-Mixer, gMLP, resMLP, Vision Permutator, S2MLPv2, RaftMLP, ConvMLP, ConvMixer in Jittor and PyTorch.

Unofficial Implementation of MLP-Mixer, gMLP, resMLP, Vision Permutator, S2MLPv2, RaftMLP, ConvMLP, ConvMixer in Jittor and PyTorch! Now, Rearrange and Reduce in einops.layers.jittor are support!!

130 Jan 08, 2023
Code for layerwise detection of linguistic anomaly paper (ACL 2021)

Layerwise Anomaly This repository contains the source code and data for our ACL 2021 paper: "How is BERT surprised? Layerwise detection of linguistic

6 Dec 07, 2022
Inverse Optimal Control Adapted to the Noise Characteristics of the Human Sensorimotor System

Inverse Optimal Control Adapted to the Noise Characteristics of the Human Sensorimotor System This repository contains code for the paper Schultheis,

2 Oct 28, 2022
Iran Open Source Hackathon

Iran Open Source Hackathon is an open-source hackathon (duh) with the aim of encouraging participation in open-source contribution amongst Iranian dev

OSS Hackathon 121 Dec 25, 2022
blind SQLIpy sebuah alat injeksi sql yang menggunakan waktu sql untuk mendapatkan sebuah server database.

blind SQLIpy Alat blind SQLIpy ini merupakan alat injeksi sql yang menggunakan metode time based blind sql injection metode tersebut membutuhkan waktu

Galih Anggoro Prasetya 4 Feb 24, 2022
OpenMMLab Semantic Segmentation Toolbox and Benchmark.

Documentation: https://mmsegmentation.readthedocs.io/ English | 简体中文 Introduction MMSegmentation is an open source semantic segmentation toolbox based

OpenMMLab 5k Dec 31, 2022
PyTorch Code for "Generalization in Dexterous Manipulation via Geometry-Aware Multi-Task Learning"

Generalization in Dexterous Manipulation via Geometry-Aware Multi-Task Learning [Project Page] [Paper] Wenlong Huang1, Igor Mordatch2, Pieter Abbeel1,

Wenlong Huang 40 Nov 22, 2022
Orchestrating Distributed Materials Acceleration Platform Tutorial

Orchestrating Distributed Materials Acceleration Platform Tutorial This tutorial for orchestrating distributed materials acceleration platform was pre

BIG-MAP 1 Jan 25, 2022
Stochastic Normalizing Flows

Stochastic Normalizing Flows We introduce stochasticity in Boltzmann-generating flows. Normalizing flows are exact-probability generative models that

AI4Science group, FU Berlin (Frank Noé and co-workers) 50 Dec 16, 2022
Julia and Matlab codes to simulated all problems in El-Hachem, McCue and Simpson (2021)

Substrate_Mediated_Invasion Julia and Matlab codes to simulated all problems in El-Hachem, McCue and Simpson (2021) 2DSolver.jl reproduces the simulat

Matthew Simpson 0 Nov 09, 2021
NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling @ INTERSPEECH 2021 Accepted

NU-Wave — Official PyTorch Implementation NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling Junhyeok Lee, Seungu Han @ MINDsLab Inc

MINDs Lab 242 Dec 23, 2022
Code for "NeRS: Neural Reflectance Surfaces for Sparse-View 3D Reconstruction in the Wild," in NeurIPS 2021

Code for Neural Reflectance Surfaces (NeRS) [arXiv] [Project Page] [Colab Demo] [Bibtex] This repo contains the code for NeRS: Neural Reflectance Surf

Jason Y. Zhang 234 Dec 30, 2022
A2LP for short, ECCV2020 spotlight, Investigating SSL principles for UDA problems

Label-Propagation-with-Augmented-Anchors (A2LP) Official codes of the ECCV2020 spotlight (label propagation with augmented anchors: a simple semi-supe

20 Oct 27, 2022
A high-level Python library for Quantum Natural Language Processing

lambeq About lambeq is a toolkit for quantum natural language processing (QNLP). Documentation: https://cqcl.github.io/lambeq/ User support: lambeq-su

Cambridge Quantum 315 Jan 01, 2023
Short and long time series classification using convolutional neural networks

time-series-classification Short and long time series classification via convolutional neural networks In this project, we present a novel framework f

35 Oct 22, 2022
Kaggle G2Net Gravitational Wave Detection : 2nd place solution

Kaggle G2Net Gravitational Wave Detection : 2nd place solution

Hiroshechka Y 33 Dec 26, 2022
Linescanning - Package for (pre)processing of anatomical and (linescanning) fMRI data

line scanning repository This repository contains all of the tools used during the acquisition and postprocessing of line scanning data at the Spinoza

Jurjen Heij 4 Sep 14, 2022
Code for Ditto: Building Digital Twins of Articulated Objects from Interaction

Ditto: Building Digital Twins of Articulated Objects from Interaction Zhenyu Jiang, Cheng-Chun Hsu, Yuke Zhu CVPR 2022, Oral Project | arxiv News 2022

UT Robot Perception and Learning Lab 78 Dec 22, 2022