Tensorflow implementation of Swin Transformer model.

Overview

Swin Transformer (Tensorflow)

Tensorflow reimplementation of Swin Transformer model.

Based on Official Pytorch implementation. image

Requirements

  • tensorflow >= 2.4.1

Pretrained Swin Transformer Checkpoints

ImageNet-1K and ImageNet-22K Pretrained Checkpoints

name pretrain resolution [email protected] #params model
swin_tiny_224 ImageNet-1K 224x224 81.2 28M github
swin_small_224 ImageNet-1K 224x224 83.2 50M github
swin_base_224 ImageNet-22K 224x224 85.2 88M github
swin_base_384 ImageNet-22K 384x384 86.4 88M github
swin_large_224 ImageNet-22K 224x224 86.3 197M github
swin_large_384 ImageNet-22K 384x384 87.3 197M github

Examples

Initializing the model:

from swintransformer import SwinTransformer

model = SwinTransformer('swin_tiny_224', num_classes=1000, include_top=True, pretrained=False)

You can use a pretrained model like this:

import tensorflow as tf
from swintransformer import SwinTransformer

model = tf.keras.Sequential([
  tf.keras.layers.Lambda(lambda data: tf.keras.applications.imagenet_utils.preprocess_input(tf.cast(data, tf.float32), mode="torch"), input_shape=[*IMAGE_SIZE, 3]),
  SwinTransformer('swin_tiny_224', include_top=False, pretrained=True),
  tf.keras.layers.Dense(NUM_CLASSES, activation='softmax')
])

If you use a pretrained model with TPU on kaggle, specify use_tpu option:

import tensorflow as tf
from swintransformer import SwinTransformer

model = tf.keras.Sequential([
  tf.keras.layers.Lambda(lambda data: tf.keras.applications.imagenet_utils.preprocess_input(tf.cast(data, tf.float32), mode="torch"), input_shape=[*IMAGE_SIZE, 3]),
  SwinTransformer('swin_tiny_224', include_top=False, pretrained=True, use_tpu=True),
  tf.keras.layers.Dense(NUM_CLASSES, activation='softmax')
])

Example: TPU training on Kaggle

Citation

@article{liu2021Swin,
  title={Swin Transformer: Hierarchical Vision Transformer using Shifted Windows},
  author={Liu, Ze and Lin, Yutong and Cao, Yue and Hu, Han and Wei, Yixuan and Zhang, Zheng and Lin, Stephen and Guo, Baining},
  journal={arXiv preprint arXiv:2103.14030},
  year={2021}
}
Comments
  • no module name 'swintransformer' error

    no module name 'swintransformer' error

    I wounder where the from swintransformer import SwinTransformer come from? I tried to pip install it, it also said that there is no such module. How can I overcome this problem?

    opened by HunarAA 2
  • Pretrained Swin-Transformer for multiple output

    Pretrained Swin-Transformer for multiple output

    Hi rishigami,

    Thank you for the implementation in Tensorflow. I am trying to use the Swin Transformer for a classification problem with multiple outputs. In your guide on how to use a pertained model you put it in a Sequential mode, but in this way I am not able to stack multiple dense layer for the multiple classification, could you help me understand how can I adapt your TF code to my problem, using it in a Functional API way maybe?

    opened by imanuelroz 2
  • NotImplementedError during model save

    NotImplementedError during model save

    I have defined a model as follows:

    def buildModel(LR = LR):
        backbone = SwinTransformer('swin_large_224', num_classes=None, include_top=False, pretrained=True, use_tpu=False)
        
        inp = L.Input(shape=(224,224,3))
        emb = backbone(inp)
        out = L.Dense(1,activation="relu")(emb)
        
        model = tf.keras.Model(inputs=inp,outputs=out)
        optimizer = tf.keras.optimizers.Adam(lr = LR)
        model.compile(loss="mse",optimizer=optimizer,metrics=[tf.keras.metrics.RootMeanSquaredError()])
        return model
    

    Now when I save this model using model.save("./model.hdf5") I get the following error:

    NotImplementedError                       Traceback (most recent call last)
    /tmp/ipykernel_43/131311624.py in <module>
    ----> 1 model.save("model.hdf5")
    
    /opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/engine/training.py in save(self, filepath, overwrite, include_optimizer, save_format, signatures, options, save_traces)
       2000     # pylint: enable=line-too-long
       2001     save.save_model(self, filepath, overwrite, include_optimizer, save_format,
    -> 2002                     signatures, options, save_traces)
       2003 
       2004   def save_weights(self,
    
    /opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/saving/save.py in save_model(model, filepath, overwrite, include_optimizer, save_format, signatures, options, save_traces)
        152           'or using `save_weights`.')
        153     hdf5_format.save_model_to_hdf5(
    --> 154         model, filepath, overwrite, include_optimizer)
        155   else:
        156     saved_model_save.save(model, filepath, overwrite, include_optimizer,
    
    /opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/saving/hdf5_format.py in save_model_to_hdf5(model, filepath, overwrite, include_optimizer)
        113 
        114   try:
    --> 115     model_metadata = saving_utils.model_metadata(model, include_optimizer)
        116     for k, v in model_metadata.items():
        117       if isinstance(v, (dict, list, tuple)):
    
    /opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/saving/saving_utils.py in model_metadata(model, include_optimizer, require_config)
        156   except NotImplementedError as e:
        157     if require_config:
    --> 158       raise e
        159 
        160   metadata = dict(
    
    /opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/saving/saving_utils.py in model_metadata(model, include_optimizer, require_config)
        153   model_config = {'class_name': model.__class__.__name__}
        154   try:
    --> 155     model_config['config'] = model.get_config()
        156   except NotImplementedError as e:
        157     if require_config:
    
    /opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/engine/functional.py in get_config(self)
        648 
        649   def get_config(self):
    --> 650     return copy.deepcopy(get_network_config(self))
        651 
        652   @classmethod
    
    /opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/engine/functional.py in get_network_config(network, serialize_layer_fn)
       1347         filtered_inbound_nodes.append(node_data)
       1348 
    -> 1349     layer_config = serialize_layer_fn(layer)
       1350     layer_config['name'] = layer.name
       1351     layer_config['inbound_nodes'] = filtered_inbound_nodes
    
    /opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/utils/generic_utils.py in serialize_keras_object(instance)
        248         return serialize_keras_class_and_config(
        249             name, {_LAYER_UNDEFINED_CONFIG_KEY: True})
    --> 250       raise e
        251     serialization_config = {}
        252     for key, item in config.items():
    
    /opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/utils/generic_utils.py in serialize_keras_object(instance)
        243     name = get_registered_name(instance.__class__)
        244     try:
    --> 245       config = instance.get_config()
        246     except NotImplementedError as e:
        247       if _SKIP_FAILED_SERIALIZATION:
    
    /opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/engine/training.py in get_config(self)
       2252 
       2253   def get_config(self):
    -> 2254     raise NotImplementedError
       2255 
       2256   @classmethod
    
    NotImplementedError: 
    
    opened by Bibhash123 1
  • Invalid argument

    Invalid argument

    this is my basic model

    
    with tpu_strategy.scope():
        model = tf.keras.Sequential([
                            tf.keras.layers.Lambda(lambda data: tf.keras.applications.imagenet_utils.preprocess_input(data, mode="torch"), 
                                                                input_shape=[224,224, 3]),
                            SwinTransformer('swin_tiny_224', include_top=False, pretrained=True, use_tpu=True),
                            tf.keras.layers.Dense(1, activation='sigmoid')
                                            ])
    
    model.compile(loss = tf.keras.losses.BinaryCrossentropy(),
                              optimizer = tf.keras.optimizers.Adam(learning_rate=cfg['LEARNING_RATE']),
                              metrics   = RMSE)
    
    

    I am getting this error,

    (3) Invalid argument: {{function_node __inference_train_function_705020}} Reshape's input dynamic dimension is decomposed into multiple output dynamic dimensions, but the constraint is ambiguous and XLA can't infer the output dimension %reshape.12202 = f32[256,144,576]{2,1,0} reshape(f32[36864,576]{1,0} %transpose.12194), metadata={op_type="Reshape" op_name="sequential_40/swin_large_384/sequential_39/basic_layer_28/sequential_35/swin_transformer_block_169/window_attention_169/layers0/blocks1/attn/qkv/Tensordot"}. [[{{node TPUReplicate/_compile/_17658394825749957328/_4}}]] [[tpu_compile_succeeded_assert/_11424487196827204192/_5/_209]]

    opened by AliKayhanAtay 1
  • relative_position_bias_table initialization

    relative_position_bias_table initialization

    Hi, In the official code, relative_position_bias_table is initialized in a truncated normal distribution. Is that part missing in this repo?

    Official code: https://github.com/microsoft/Swin-Transformer/blob/6bbd83ca617db8480b2fb9b335c476ffaf5afb1a/models/swin_transformer.py#L110

    This implem https://github.com/rishigami/Swin-Transformer-TF/blob/8986ca7b0e1f984437db2d8f17e0ecd87fadcd4f/swintransformer/model.py?_pjax=%23js-repo-pjax-container%2C%20div%5Bitemtype%3D%22http%3A%2F%2Fschema.org%2FSoftwareSourceCode%22%5D%20main%2C%20%5Bdata-pjax-container%5D#L70

    opened by gathierry 1
  • Image size other than default ones doesn't work

    Image size other than default ones doesn't work

    • Notebook: https://colab.research.google.com/drive/1nqYkQCUzShkVdqGxW4TyMrtAb0n5MBZR#scrollTo=G9ZVlphmqD7d Issue:
    • In swin_tiny_224 I've tried multiple of 224, 512x512, multiple of window_size. But nothing seems to work other than the 224x224.
    • Same goes for swin_large_384, only default size 384x384 works.

    I'm wondering if this is expected behavior or not. Is there any way to make it work for non-square image?

    opened by awsaf49 1
  • Added 3D support for SwinTransformerModel, ie for medical imaging tasks

    Added 3D support for SwinTransformerModel, ie for medical imaging tasks

    Tested and working, ie:

    IMAGE_SIZE = [112, 112, 112]
    NUM_CLASSES = 10
    
    model_3d = tf.keras.Sequential([
      swin_transformer_nd.SwinTransformerModel(img_size=IMAGE_SIZE, patch_size=(4, 4, 4), depths=[2, 2, 6]),
      tf.keras.layers.Dense(NUM_CLASSES, activation='softmax')
    ])
    model_3d.compile(tf.keras.optimizers.Adam(), "categorical_crossentropy")
    
    for i in range(100):
        x = np.zeros([1, *IMAGE_SIZE, 1])
        y = tf.zeros([1, NUM_CLASSES])
        
        model_3d.fit(x, y)
        print("Trained on a batch")
    
    opened by MohamadZeina 0
  • Could you provide weights convert script?

    Could you provide weights convert script?

    I tried code and weights you provided, and find the performance is bad. Could you pleaase to provide weights convert script for me to figure out this issue?

    Many thanks

    opened by edwardyehuang 0
  • tf load model is erro

    tf load model is erro

    import tensorflow as tf from swintransformer import SwinTransformer model = tf.keras.Sequential([ tf.keras.layers.Lambda(lambda data: tf.keras.applications.imagenet_utils.preprocess_input(tf.cast(data, tf.float32), mode="torch"), input_shape=[*IMAGE_SIZE, 3]), SwinTransformer('swin_tiny_224', include_top=False, pretrained=True), tf.keras.layers.Dense(NUM_CLASSES, activation='softmax') ])

    tf can't load pre trained model。this step is errro

    opened by jangjiun 0
  • Please run in eager mode or implement the `compute_output_shape` method on your layer (SwinTransformerModel)

    Please run in eager mode or implement the `compute_output_shape` method on your layer (SwinTransformerModel)

    Has anyone tried to use the pretrained model with TimeDistributed layer ?

    model = tf.keras.Sequential([ tf.keras.layers.Lambda(lambda data: tf.keras.applications.imagenet_utils.preprocess_input(tf.cast(data, tf.float32), mode="torch"), 
    input_shape=[224,224, 3]), SwinTransformer('swin_base_224', include_top=False, pretrained=True)])
    
    model_f = models.Sequential()
    	model.add(TimeDistributed(model, input_shape= (8,224,224,3)) 
    
    

    I get the following error:

    NotImplementedError: Exception encountered when calling layer "time_distributed" (type TimeDistributed).
    
    Please run in eager mode or implement the `compute_output_shape` method on your layer (SwinTransformerModel).
    
    Call arguments received by layer "time_distributed" (type TimeDistributed):
      • inputs=tf.Tensor(shape=(None, 8, 224, 224, 3), dtype=float32)
      • training=False
    
    
    opened by atelili 0
Releases(v0.1-tf-swin-weights)
Minimal implementation and experiments of "No-Transaction Band Network: A Neural Network Architecture for Efficient Deep Hedging".

No-Transaction Band Network: A Neural Network Architecture for Efficient Deep Hedging Minimal implementation and experiments of "No-Transaction Band N

19 Jan 03, 2023
Implementation for On Provable Benefits of Depth in Training Graph Convolutional Networks

Implementation for On Provable Benefits of Depth in Training Graph Convolutional Networks Setup This implementation is based on PyTorch = 1.0.0. Smal

Weilin Cong 8 Oct 28, 2022
SPEAR: Semi suPErvised dAta progRamming

Semi-Supervised Data Programming for Data Efficient Machine Learning SPEAR is a library for data programming with semi-supervision. The package implem

decile-team 91 Dec 06, 2022
Machine Learning From Scratch. Bare bones NumPy implementations of machine learning models and algorithms with a focus on accessibility. Aims to cover everything from linear regression to deep learning.

Machine Learning From Scratch About Python implementations of some of the fundamental Machine Learning models and algorithms from scratch. The purpose

Erik Linder-Norén 21.8k Jan 09, 2023
For storing the complete exploration of Visual Question Answering for our B.Tech Project

Multi-Image vqa @authors: Akhilesh, Janhavi, Harsh Paper summary, Ideas tried and their corresponding results: on wiki Other discussions: on discussio

Harsh Raj 3 Jun 16, 2022
Implementation of CVAE. Trained CVAE on faces from UTKFace Dataset to produce synthetic faces with a given degree of happiness/smileyness.

Conditional Smiles! (SmileCVAE) About Implementation of AE, VAE and CVAE. Trained CVAE on faces from UTKFace Dataset. Using an encoding of the Smile-s

Raúl Ortega 3 Jan 09, 2022
A library for uncertainty representation and training in neural networks.

Epistemic Neural Networks A library for uncertainty representation and training in neural networks. Introduction Many applications in deep learning re

DeepMind 211 Dec 12, 2022
Materials for my scikit-learn tutorial

Scikit-learn Tutorial Jake VanderPlas email: [email protected] twitter: @jakevdp gith

Jake Vanderplas 1.6k Dec 30, 2022
Bayesian optimization in PyTorch

BoTorch is a library for Bayesian Optimization built on PyTorch. BoTorch is currently in beta and under active development! Why BoTorch ? BoTorch Prov

2.5k Dec 31, 2022
Save-restricted-v-3 - Save restricted content Bot For telegram

Save restricted content Bot Contact: Telegram A stable telegram bot to get restr

DEVANSH 11 Dec 21, 2022
ALL Snow Removed: Single Image Desnowing Algorithm Using Hierarchical Dual-tree Complex Wavelet Representation and Contradict Channel Loss (HDCWNet)

ALL Snow Removed: Single Image Desnowing Algorithm Using Hierarchical Dual-tree Complex Wavelet Representation and Contradict Channel Loss (HDCWNet) (

Wei-Ting Chen 49 Dec 27, 2022
Hyper-parameter optimization for sklearn

hyperopt-sklearn Hyperopt-sklearn is Hyperopt-based model selection among machine learning algorithms in scikit-learn. See how to use hyperopt-sklearn

1.4k Jan 01, 2023
Yet another video caption

Yet another video caption

Fan Zhimin 5 May 26, 2022
A pre-trained model with multi-exit transformer architecture.

ElasticBERT This repository contains finetuning code and checkpoints for ElasticBERT. Towards Efficient NLP: A Standard Evaluation and A Strong Baseli

fastNLP 48 Dec 14, 2022
Code to produce syntactic representations that can be used to study syntax processing in the human brain

Can fMRI reveal the representation of syntactic structure in the brain? The code base for our paper on understanding syntactic representations in the

Aniketh Janardhan Reddy 4 Dec 18, 2022
The PyTorch implementation of paper REST: Debiased Social Recommendation via Reconstructing Exposure Strategies

REST The PyTorch implementation of paper REST: Debiased Social Recommendation via Reconstructing Exposure Strategies. Usage Download dataset Download

DMIRLAB 2 Mar 13, 2022
Towards Boosting the Accuracy of Non-Latin Scene Text Recognition

Convolutional Recurrent Neural Network + CTCLoss | STAR-Net Code for paper "Towards Boosting the Accuracy of Non-Latin Scene Text Recognition" Depende

Sanjana Gunna 7 Aug 07, 2022
Fully Connected DenseNet for Image Segmentation

Fully Connected DenseNets for Semantic Segmentation Fully Connected DenseNet for Image Segmentation implementation of the paper The One Hundred Layers

Somshubra Majumdar 84 Oct 31, 2022
Differential rendering based motion capture blender project.

TraceArmature Summary TraceArmature is currently a set of python scripts that allow for high fidelity motion capture through the use of AI pose estima

William Rodriguez 4 May 27, 2022
CROSS-LINGUAL ABILITY OF MULTILINGUAL BERT: AN EMPIRICAL STUDY

M-BERT-Study CROSS-LINGUAL ABILITY OF MULTILINGUAL BERT: AN EMPIRICAL STUDY Motivation Multilingual BERT (M-BERT) has shown surprising cross lingual a

CogComp 1 Feb 28, 2022