Deploy pytorch classification model using Flask and Streamlit

Overview

Tomato Disease Classification Model Deploy




1. Streamlit이란?

  • 데모 형식으로 웹을 만들 수 있는 프레임워크
  • 단점 : Interactive (파라미터, input shape, batch size 등 사용자가 화면에서 선택 할 경우) 한 동작이 발생 할 경우 새로 고침이 됨 -> form과 submit 이용해야 함



2. How to run

1-1) 플라스크 API 서버 (모델 서빙) : python flask_server.py
  • 터미널을 열어 플라스크 API 서버 (모델 서빙)을 먼저 실행 합니다.
1-2) (Option) 플라스크 API 서버 (모델 서빙) 테스트 : python flask_test.py
  • '필요 시' 터미널을 열어 플라스크 API 서버 (모델 서빙)을 테스트 합니다.
2-1) Streamlit : streamlit run streamlit.py
  • 터미널을 열어 Stremlit으로 개발 된 데모 웹 페이지를 실행 합니다.
2-2) 사용자는 http://127.0.0.1:5000/으로 웹 페이지에 접근 가능 합니다.



3. DIR 구조 설명

  • inference/ : 인퍼런스가 진행 되는 로직입니다. (학습 된 모델을 폴더 구조에 넣어 두고 > 모델을 미리 정의 해 둔 틀에 끼워서 로드 한 후 > 정규화 해서 > 요청이 들어 올 때 마다 결과 출력 하여 반환)
  • inference_image/ : 인퍼런스 할 이미지를 담는 곳입니다. (테스트 용)
  • model/ : 학습 된 모델 '틀'을 담는 곳입니다.
  • trained_model/ : 학습 된 모델을 담는 곳입니다.
  • flask_server.py : 플라스크 API 서버 (모델 서빙) 실행 파일
  • flask_test.py : 플라스크 API 서버 (모델 서빙) 테스트 파일
  • requirements.txt : 필요 라이브러리 설치
  • streamlit.py : 스트림릿 데모 웹 페이지



4. 프로젝트 진행 순서

1) 토마토 잎 분류 best 모델 저장
2) 플라스크 API 서버 (모델 서빙) 개발
3) 플라스크 API 서버 (모델 서빙) 테스트
4) 스트림릿 데모 웹 페이지 개발



5. 아키텍쳐 설명

1) 인퍼런스 로직 (PyTorch)
  • 학습 된 모델 로드 (나의 best 모델을 로컬 특정 폴더에 위치 시키기!)
  • 인풋 이미지 정규화
  • Request 발생 시 인퍼런스 결과 반환

2) 모델 서빙 (Flask)
  • Request 이미지 파일
  • 인퍼런스 로직 적용
  • 요청이 들어 올 때 마다 인퍼런스 결과 반환

3) 웹 페이지 (Streamlit)
  • 사용자가 이미지 업로드
  • 플라스크 API 서버로 이미지 request
  • 인퍼런스 진행 된 response 결과 파싱
  • Streamlit 화면에 뿌림



6. 기타

  • 여러 데이터를 한 번에 인퍼런스 할 경우 고려하기
  • 인퍼런스가 돌 때 추가 호출이 올 경우 고려하기
  • 배치성, 실시간성, 큐에 넣고 한 번에 동작 등 여러 시나리오 고려 하기
Owner
Ben Seo
데린이
Ben Seo
Fusion-DHL: WiFi, IMU, and Floorplan Fusion for Dense History of Locations in Indoor Environments

Fusion-DHL: WiFi, IMU, and Floorplan Fusion for Dense History of Locations in Indoor Environments Paper: arXiv (ICRA 2021) Video : https://youtu.be/CC

Sachini Herath 68 Jan 03, 2023
CS50's Introduction to Artificial Intelligence Test Scripts

CS50's Introduction to Artificial Intelligence Test Scripts 🤷‍♂️ What's this? 🤷‍♀️ This repository contains Python scripts to automate tests for mos

Jet Kan 2 Dec 28, 2022
Finite Element Analysis

FElupe - Finite Element Analysis FElupe is a Python 3.6+ finite element analysis package focussing on the formulation and numerical solution of nonlin

Andreas D. 20 Jan 09, 2023
Sequence Modeling with Structured State Spaces

Structured State Spaces for Sequence Modeling This repository provides implementations and experiments for the following papers. S4 Efficiently Modeli

HazyResearch 896 Jan 01, 2023
Versatile Generative Language Model

Versatile Generative Language Model This is the implementation of the paper: Exploring Versatile Generative Language Model Via Parameter-Efficient Tra

Zhaojiang Lin 17 Dec 02, 2022
Adaptive Pyramid Context Network for Semantic Segmentation (APCNet CVPR'2019)

Adaptive Pyramid Context Network for Semantic Segmentation (APCNet CVPR'2019) Introduction Official implementation of Adaptive Pyramid Context Network

21 Nov 09, 2022
Depth image based mouse cursor visual haptic

Depth image based mouse cursor visual haptic How to run it. Install pyqt5. Install python modules pip install Pillow pip install numpy For illustrati

Xiong Jie 17 Dec 20, 2022
A higher performance pytorch implementation of DeepLab V3 Plus(DeepLab v3+)

A Higher Performance Pytorch Implementation of DeepLab V3 Plus Introduction This repo is an (re-)implementation of Encoder-Decoder with Atrous Separab

linhua 326 Nov 22, 2022
VQGAN+CLIP Colab Notebook with user-friendly interface.

VQGAN+CLIP and other image generation system VQGAN+CLIP Colab Notebook with user-friendly interface. Latest Notebook: Mse regulized zquantize Notebook

Justin John 227 Jan 05, 2023
Tensorflow AffordanceNet and AffContext implementations

AffordanceNet and AffContext This is tensorflow AffordanceNet and AffContext implementations. Both are implemented and tested with tensorflow 2.3. The

Beatriz Pérez 6 Dec 01, 2022
A BaSiC Tool for Background and Shading Correction of Optical Microscopy Images

BaSiC Matlab code accompanying A BaSiC Tool for Background and Shading Correction of Optical Microscopy Images by Tingying Peng, Kurt Thorn, Timm Schr

Marr Lab 34 Dec 18, 2022
Crab is a flexible, fast recommender engine for Python that integrates classic information filtering recommendation algorithms in the world of scientific Python packages (numpy, scipy, matplotlib).

Crab - A Recommendation Engine library for Python Crab is a flexible, fast recommender engine for Python that integrates classic information filtering r

python-recsys 1.2k Dec 21, 2022
Tianshou - An elegant PyTorch deep reinforcement learning library.

Tianshou (天授) is a reinforcement learning platform based on pure PyTorch. Unlike existing reinforcement learning libraries, which are mainly based on

Tsinghua Machine Learning Group 5.5k Jan 05, 2023
Course content and resources for the AIAIART course.

AIAIART course This repo will house the notebooks used for the AIAIART course. Part 1 (first four lessons) ran via Discord in September/October 2021.

Jonathan Whitaker 492 Jan 06, 2023
General-purpose program synthesiser

DeepSynth General-purpose program synthesiser. This is the repository for the code of the paper "Scaling Neural Program Synthesis with Distribution-ba

Nathanaël Fijalkow 24 Oct 23, 2022
这是一个facenet-pytorch的库,可以用于训练自己的人脸识别模型。

Facenet:人脸识别模型在Pytorch当中的实现 目录 性能情况 Performance 所需环境 Environment 注意事项 Attention 文件下载 Download 预测步骤 How2predict 训练步骤 How2train 参考资料 Reference 性能情况 训练数据

Bubbliiiing 210 Jan 06, 2023
Our CIKM21 Paper "Incorporating Query Reformulating Behavior into Web Search Evaluation"

Reformulation-Aware-Metrics Introduction This codebase contains source-code of the Python-based implementation of our CIKM 2021 paper. Chen, Jia, et a

xuanyuan14 5 Mar 05, 2022
Official implementation for TTT++: When Does Self-supervised Test-time Training Fail or Thrive

TTT++ This is an official implementation for TTT++: When Does Self-supervised Test-time Training Fail or Thrive? TL;DR: Online Feature Alignment + Str

VITA lab at EPFL 39 Dec 25, 2022
Leaf: Multiple-Choice Question Generation

Leaf: Multiple-Choice Question Generation Easy to use and understand multiple-choice question generation algorithm using T5 Transformers. The applicat

Kristiyan Vachev 62 Dec 20, 2022
Official implementation for: Blended Diffusion for Text-driven Editing of Natural Images.

Blended Diffusion for Text-driven Editing of Natural Images Blended Diffusion for Text-driven Editing of Natural Images Omri Avrahami, Dani Lischinski

328 Dec 30, 2022