Code for "Adversarial Training for a Hybrid Approach to Aspect-Based Sentiment Analysis

Overview

HAABSAStar

Code for "Adversarial Training for a Hybrid Approach to Aspect-Based Sentiment Analysis". This project builds on the code from https://github.com/ofwallaart/HAABSA and https://github.com/mtrusca/HAABSA_PLUS_PLUS.

All software is written in PYTHON3 (https://www.python.org/) and makes use of the TensorFlow framework (https://www.tensorflow.org/).

Installation Instructions (Windows):

Dowload required files and add them to data/externalData folder:

  1. Download ontology: https://github.com/KSchouten/Heracles/tree/master/src/main/resources/externalData
  2. Download SemEval2015 Datasets: http://alt.qcri.org/semeval2015/task12/index.php?id=data-and-tools
  3. Download SemEval2016 Dataset: http://alt.qcri.org/semeval2016/task5/index.php?id=data-and-tools
  4. Download Glove Embeddings: http://nlp.stanford.edu/data/glove.42B.300d.zip
  5. Download Stanford CoreNLP parser: https://nlp.stanford.edu/software/stanford-parser-full-2018-02-27.zip
  6. Download Stanford CoreNLP Language models: https://nlp.stanford.edu/software/stanford-english-corenlp-2018-02-27-models.jar

Setup Environment

  1. Install chocolatey (a package manager for Windows): https://chocolatey.org/install
  2. Open a command prompt.
  3. Install python3 by running the following command: code(choco install python) (http://docs.python-guide.org/en/latest/starting/install3/win/).
  4. Make sure that pip is installed and use pip to install the following packages: setuptools and virtualenv (http://docs.python-guide.org/en/latest/dev/virtualenvs/#virtualenvironments-ref).
  5. Create a virtual environemnt in a desired location by running the following command: code(virtualenv ENV_NAME)
  6. Direct to the virtual environment source directory.
  7. Unzip the zip file of this GitHub repository in the virtual environment directrory.
  8. Activate the virtual environment by the following command: 'code(Scripts\activate.bat)`.
  9. Install the required packages from the requirements.txt file by running the following command: code(pip install -r requirements.txt).
  10. Install the required space language pack by running the following command: code(python -m spacy download en)

Note: the files BERT768embedding2015.txt and BERT768embedding2016.txt are too large for GitHub. These can be generated using getBERTusingColab.py.

Configure paths

The following scripts contain file paths to adapt to your computer (this is done by adding the path to you virtual environment before the filename. For example "/path/to/venv"+"data/programGeneratedData/GloVetraindata"): main_cross.py, main_hyper.py, config.py, HyperDataMaker.py, adversarial.py.

Run Software

  1. Configure one of the three main files to the required configuration (main.py, main_cross.py, main_hyper.py)
  2. Run the program from the command line by the following command: code(python PROGRAM_TO_RUN.py) (where PROGRAM_TO_RUN is main/main_cross/main_hyper)

Software explanation:

The environment contains the following main files that can be run: main.py, main_cross.py, main_hyper.py

  • main.py: program to run single in-sample and out-of-sample valdition runs. Each method can be activated by setting its corresponding boolean to True e.g. to run the Adversarial method set runAdversarial= True.

  • main_cross.py: similar to main.py but runs a 10-fold cross validation procedure for each method.

  • main_hyper.py: program that is able to do hyperparameter optimzation for a given space of hyperparamters for each method. To change a method change the objective and space parameters in the run_a_trial() function.

  • config.py: contains parameter configurations that can be changed such as: dataset_year, batch_size, iterations.

  • dataReader2016.py, loadData.py: files used to read in the raw data and transform them to the required formats to be used by one of the algorithms

  • lcrModel.py: Tensorflow implementation for the LCR-Rot algorithm

  • lcrModelAlt.py: Tensorflow implementation for the LCR-Rot-hop algorithm

  • lcrModelInverse.py: Tensorflow implementation for the LCR-Rot-inv algorithm

  • cabascModel.py: Tensorflow implementation for the CABASC algorithm

  • OntologyReasoner.py: PYTHON implementation for the ontology reasoner

  • svmModel.py: PYTHON implementation for a BoW model using a SVM.

  • adversarial.py: Tensorflow implementation of adversarial training for LCR-Rot-hop

  • att_layer.py, nn_layer.py, utils.py: programs that declare additional functions used by the machine learning algorithms.

Directory explanation:

The following directories are necessary for the virtual environment setup: __pycache, \Include, \Lib, \Scripts, \tcl, \venv

  • cross_results_2015: Results for a k-fold cross validation process for the SemEval-2015 dataset
  • cross_results_2016: Results for a k-fold cross validation process for the SemEval-2015 dataset
  • Results_Run_Adversarial: If WriteFile = True, a csv with accuracies per iteration is saved here
  • data:
    • externalData: Location for the external data required by the methods
    • programGeneratedData: Location for preprocessed data that is generated by the programs
  • hyper_results: Contains the stored results for hyperparameter optimzation for each method
  • results: temporary store location for the hyperopt package

Changed files with respect to https://github.com/mtrusca/HAABSA_PLUS_PLUS:

  • main.py
  • main_hyper.py
  • main_cross.py
  • config.py
  • adversarial.py (added)
Autonomous Robots Kalman Filters

Autonomous Robots Kalman Filters The Kalman Filter is an easy topic. However, ma

20 Jul 18, 2022
A model to classify a piece of news as REAL or FAKE

Fake_news_classification A model to classify a piece of news as REAL or FAKE. This python project of detecting fake news deals with fake and real news

Gokul Stark 1 Jan 29, 2022
CZU-MHAD: A multimodal dataset for human action recognition utilizing a depth camera and 10 wearable inertial sensors

CZU-MHAD: A multimodal dataset for human action recognition utilizing a depth camera and 10 wearable inertial sensors   In order to facilitate the res

yujmo 11 Dec 12, 2022
Learning where to learn - Gradient sparsity in meta and continual learning

Learning where to learn - Gradient sparsity in meta and continual learning In this paper, we investigate gradient sparsity found by MAML in various co

Johannes Oswald 28 Dec 09, 2022
Relative Positional Encoding for Transformers with Linear Complexity

Stochastic Positional Encoding (SPE) This is the source code repository for the ICML 2021 paper Relative Positional Encoding for Transformers with Lin

Antoine Liutkus 48 Nov 16, 2022
2021 CCF BDCI 全国信息检索挑战杯(CCIR-Cup)智能人机交互自然语言理解赛道第二名参赛解决方案

2021 CCF BDCI 全国信息检索挑战杯(CCIR-Cup) 智能人机交互自然语言理解赛道第二名解决方案 比赛网址: CCIR-Cup-智能人机交互自然语言理解 1.依赖环境: python==3.8 torch==1.7.1+cu110 numpy==1.19.2 transformers=

JinXiang 22 Oct 29, 2022
PyTorch code for 'Efficient Single Image Super-Resolution Using Dual Path Connections with Multiple Scale Learning'

Efficient Single Image Super-Resolution Using Dual Path Connections with Multiple Scale Learning This repository is for EMSRDPN introduced in the foll

7 Feb 10, 2022
Sequence lineage information extracted from RKI sequence data repo

Pango lineage information for German SARS-CoV-2 sequences This repository contains a join of the metadata and pango lineage tables of all German SARS-

Cornelius Roemer 24 Oct 26, 2022
Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds for Autonomous Driving

SalsaNext: Fast, Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds for Autonomous Driving Abstract In this paper, we introduce SalsaNext f

308 Jan 04, 2023
maximal update parametrization (µP)

Maximal Update Parametrization (μP) and Hyperparameter Transfer (μTransfer) Paper link | Blog link In Tensor Programs V: Tuning Large Neural Networks

Microsoft 694 Jan 03, 2023
Demonstrational Session git repo for H SAF User Workshop (28/1)

5th H SAF User Workshop The 5th H SAF User Workshop supported by EUMeTrain will be held in online in January 24-28 2022. This repository contains inst

H SAF 4 Aug 04, 2022
A research toolkit for particle swarm optimization in Python

PySwarms is an extensible research toolkit for particle swarm optimization (PSO) in Python. It is intended for swarm intelligence researchers, practit

Lj Miranda 1k Dec 30, 2022
Distinguishing Commercial from Editorial Content in News

Distinguishing Commercial from Editorial Content in News In this repository you can find the following: An anonymized version of the data used for my

Timo Kats 3 Sep 26, 2022
Iris prediction model is used to classify iris species created julia's DecisionTree, DataFrames, JLD2, PlotlyJS and Statistics packages.

Iris Species Predictor Iris prediction is used to classify iris species using their sepal length, sepal width, petal length and petal width created us

Siva Prakash 2 Jan 06, 2022
Implementation of EMNLP 2017 Paper "Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog" using PyTorch and ParlAI

Language Emergence in Multi Agent Dialog Code for the Paper Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog Satwik Kottur, José M.

Karan Desai 105 Nov 25, 2022
Toolkit for collecting and applying prompts

PromptSource Promptsource is a toolkit for collecting and applying prompts to NLP datasets. Promptsource uses a simple templating language to programa

BigScience Workshop 998 Jan 03, 2023
Repository for the semantic WMI loss

Installation: pip install -e . Installing DL2: First clone DL2 in a separate directory and install it using the following commands: git clone https:/

Nick Hoernle 4 Sep 15, 2022
Github Traffic Insights as Prometheus metrics.

github-traffic Github Traffic collects your repository's traffic data and exposes it as Prometheus metrics. Grafana dashboard that displays the metric

Grafana Labs 34 Oct 27, 2022
The Environment I built to study Reinforcement Learning + Pokemon Showdown

pokemon-showdown-rl-environment The Environment I built to study Reinforcement Learning + Pokemon Showdown Been a while since I ran this. Think it is

3 Jan 16, 2022
This repo is about implementing different approaches of pose estimation and also is a sub-task of the smart hospital bed project :smile:

Pose-Estimation This repo is a sub-task of the smart hospital bed project which is about implementing the task of pose estimation 😄 Many thanks to th

Max 11 Oct 17, 2022