A simple portable USB MIDI controller based on Raspberry-PI Pico and a 16-button keypad, written in Circuit Python

Overview

RPI-Pico-16-BTn-MIDI-Controller-using-CircuitPython

A simple portable USB MIDI controller based on Raspberry-PI Pico, written in Circuit Python.

Links/ References:

YouTube Link for My Demo: 
CircuitPython UF2 file Download: https://circuitpython.org/board/raspberry_pi_pico/
CircuitPython Library Download: https://circuitpython.org/libraries
CircuitPython Docs on the modules used: https://circuitpython.readthedocs.io/en/latest/shared-bindings/displayio/index.html
Mu Editor Download Link: https://codewith.mu/

*** Please make sure to match the library and the UF2 file versions ***
*** Even Notepad can be used to modify the "code.py" file on the RPI-Pico, but Mu editor has the Serial-terminal integrated and also checks for syntax and other issues in the code, hence I used the above. ***
*** Only issue with (the version of Mu) editor I have is that it crashes if large amoumnt of serial data needs to be displayed and/or the data is updated too fast in the serial terminal. ***

Detailed Description of the project/ device:

The aim is to create a simple and portable USB MIDI controller to be used with DAWs availble on mobile devices, e.g., FL Studio Mobile, Garage Band, etc. 
This is because I personally find playing something on a touch-screen to be very difficult, hence if I have any spontaneous musical ideas, I almost always have to sit down with my laptop, plug the usb-audio-interface, plug my keyboard as MIDI device, etc etc, which sometimes may or may not be possible depending on the situation, as well as mood.
*** I am fully aware that portable MIDI controllers and Keyboards are readily available, but where's the fun in just simply buying them, when you can make one yourself ;-) ***
*** If one is interested solely in the music-production aspect, I will suggest to get the commercially available devices and ignore this project, as it will save precious time, but if you like to DIY, then please keep reading ***

The device (after construction) shows up and acts as general MIDI device in PC or Android. I have tested in Windows 10 with Waveform-11 and in Android Smartphone with FL-Studio mobile, and it works with both and device is recognized without any drivers. Thanks to the amazing libraries from Adafruit Industries.

The controller is USB bus powered and has 16-buttons in the keypad, which can be used to send MIDI notes. Multiple notes can be sent at ones, but the polyphony is limited by the ghost-note effect of the 4x4 button matrix. This can be fixed by using diodes with switches, one can google for "diode keypad matrix" regarding the same for more information.

The controller's GUI consists of the 128x64 oled screen and the rotary encoder. The notes for each key in the keypad is displayed and with the rotary encoder the velocity value can be selected, as well as transpose and octave. 

The controller also has a scale mode, where currently 10 scales can be selected, with chromatic-scale as the default.
It also has a chord mode, where Power, Major, Minor and Diminshed chords can be sent by presseing only one button.

For more information and a demo of the features, please visit the YouTube link.

Parts Required (excluding the PC, MIDI-host-device and the usb-cable):

1. Raspberry-Pi Pico microcontroller - 1pc
2. 0.96 inch 128x64 monochrome oled display (here the blue one is used, as it is cheaper). - 1pc
3. Rotary encoder with switch (5-pins, 2-pins for built-in switch and 3 pins for the encoder) - 1pc
4. Prototyping PCB (Vero-board) or breadboard, for connecting everything together - 1pc
5. 1 Mega Ohm resistor as pull-down for the touch-input - 1pc
6. Some Connecting wires - as per requirement

Hardware Connection Information:

1. Currrent Keypad Setup:

Keypad Pins:      a   b   c   d   e   f   g   h   i   j   k 
RPI Pico Pins:    GP0 GP1 GP2 GP3 GP4 GP5 GP6 GP7 GP8 GP9 GP10

Matrix:             1(c,b)   2(c,d)   3(c,e)   4(h,i)
                    5(a,b)   6(a,d)   7(a,e)   8(g,i)
                    9(f,k)   10(f,d)  11(f,e)  12(f,i)
                    13(j,k)  14(j,d)  15(j,e)  16(j,i)
                    Encoder-Switch (h,k)

2. Encoder Connection:

                    L to R, knob facing towards viewer:
                    clk (pin-1): GP14 and dt (pin-3): GP15, com (pin-2): Gnd

3. I2C 0.96 Blue OLED Connections:

                    sda-pin: GP20 and scl-pin: GP21; 
                    vdd, vss to 3.3V and gnd respectively 
                    Address: 0x3C

4. Touch Input for Sustain:

                    GP11 pin, and a 1meg resistor pull-down from the pin to gnd.

Notes:

1. The keypad I have used here is non-standard. I found and bought the same from my local electronic shop, and it is most likely a replacement part for land-line telephone. But the code in the "scanKBD()" function, can be easily modified to accomodate the readily available 4x4 matrix keypads.

2. Based on the above, since I had some extra lines available for the 16-key matrix, I placed the encoder switch between h,k nodes, if standard 16-key, i.e., 4x4 matrix is used, the encoder pin can be shifted to any other GPIO pin. The encoder switch-reading is done inside the main while loop. 

3. The oled brightness is currently set to 0.4 (i.e., 40%), and the same can be changed in the "Initializing the 0.96inch OLED Display" portion of the code.

4. The threshold for the touch-input (for sustain) can be set in the "Setting Touch-pin for Sustain Input" portion of the code.

5. If the oled screen has different address (or different I2C speed, here 1,000,000 is used), the same can also be modified in the "Initializing the 0.96inch OLED Display" section.

Steps to load the code in RPI-Pico, (many other tutorials are also available on the internet on how to load CircuitPython in RPI-Pico, please feel free to refer to them):

1. For a new/ fresh RPI-Pico which is not setup for circuit python, press and hold the "bootsel" button on the Pico, and then plugin to the PC and release the button.

2. The Pico should show-up as a drive "RPI-RP2", and in that drive copy the the CircuitPython's UF2 file, either from this repository or from the CircuitPython page, link mentioned above, near the heading.

3. After the UF2 file is copied, the Pico now appears as a new drive ("CIRCUITPY") and it should contain the "lib" folder and the "code.py" file.

4. In the lib-folder all the required libraries for code.py should be present, and one can copy the contents of the lib-folder attached in this repository or download the corresponding latest versions from the CircuitPython page. 

*** Please make sure, the UF2 file and the libs used are of the same version, otherwise errors may occur ***.

5. In the Pico's "code.py" file, copy the contents of the "16-BTn_MIDI_Controller_ver1.py" file present in this repository, and as soon as the changes are saved in the "code.py" file, the code should start running.

6. Please make the required changes to the "code.py" file to match the hardware connections in your design.
Owner
Rounak Dutta
Rounak Dutta
Homeautomation system created with Raspberry Pi 3 and Firebase.

Homeautomation System - Raspberry Pi 3 Desenvolvido com Python, Flask com AJAX e Firebase permite o controle local e remoto Itens necessários Raspberr

Joselino Santos 0 Mar 09, 2022
Small Robot, with LIDAR and DepthCamera. Using ROS for Maping and Navigation

🤖 RoboCop 🤖 Small Robot, with LIDAR and DepthCamera. Using ROS for Maping and Navigation Made by Clemente Donoso, 📍 Chile 🇨🇱 RoboCop Lateral Fron

Clemente Donoso Krauss 2 Jan 04, 2022
Quasi-static control of the centroid of quadruped robot

Quasi-static control of quadruped robot   This is a demo of the quasi-static controller for the centroid of the quadruped robot. The Quadratic Program

Junwen Cui 21 Dec 12, 2022
Hook and simulate global mouse events in pure Python

mouse Take full control of your mouse with this small Python library. Hook global events, register hotkeys, simulate mouse movement and clicks, and mu

BoppreH 722 Dec 31, 2022
Blender Camera Switcher

Blender Camera Switcher A simple camera switcher addon for blender. Useful when use reference image for camera. This addon will automatically fix the

Corgice 1 Jan 31, 2022
LedFx is a network based LED effect controller with support for advanced real-time audio effects

Welcome to LedFx ✨ -Making music come alive! LedFx website: https://ledfx.app/ What is LedFx? What LedFx offers is the ability to take audio input, an

786 Jan 02, 2023
Port of Uxn to digital hardware in the Logisim simulator

Uxn-Logisim Implements the Uxn instruction set in digital hardware. Very WIP. Contents cpu.circ - The Logisim file microcode.mc - Microcode source fil

DeltaF1 11 Mar 27, 2022
Easyeda2kicad.py - Convert any LCSC components (including EasyEDA) to KiCad library

easyeda2kicad.py A Python script that convert any electronic components from LCSC or EasyEDA to a Kicad library Installation git clone https://github.

uPesy Electronics 150 Jan 06, 2023
Programmable Rainbow Redstone Computer

Programmable Rainbow Redstone Computer Table of contents What is it? Program flasher How to use it What is it? PRRC is Programmable Rainbow Redstone C

Fern H 2 Jun 07, 2022
Controlling fireworks with micropython

Controlling-fireworks-with-micropython How the code works line 1-4 from machine

Montso Mokake 1 Jan 08, 2022
Lego Mindstorms EV3 and Lego Spike Prime

Lego Mindstorms EV3 and Lego Spike Prime What is FLL? The FIRST LEGO League Challenge Robotics Tournament challenges students from 9 to 16 years old t

Danimar Campos da Costa 1 Nov 14, 2021
MicroPython driver for 74HC595 shift registers

MicroPython 74HC595 A MicroPython library for 74HC595 8-bit shift registers. There's both an SPI version and a bit-bang version, each with a slightly

Mike Causer 17 Nov 29, 2022
Segger Embedded Studio project for building & debugging Flipper Zero firmware.

Segger Embedded Studio project for Flipper Zero firmware Установка Добавить данный репозиторий в качестве сабмодуля в корень локальной копии репозитор

25 Dec 28, 2022
Python Keylogger for Linux

A keylogger is a program that records your keystrokes, this program saves them in a .txt file on your local computer and, after 30 seconds (or as long as you want), it will close the .txt file and se

Darío Mazzitelli 4 Jul 31, 2021
Example code and projects for FeatherS2 and FeatherS2 Neo

FeatherS2 & FeatherS2 Neo This repo is a collection of code, firmware, and files

Unexpected Maker 5 Jan 01, 2023
Turns a compatible Raspberry Pi device into a smart USB drive for PS4/PS5.

PSBerry A WIP project for Raspberry Pi, which turns a compatible RPI device into a smart USB drive for PS4/PS5. Allows for save management of PS4 game

Filip Tomaszewski 2 Jan 15, 2022
Toy robot that traverses on a finite surface

Toy Robot Challenge - Release Notes November 12, 2021 New features Initialisation - Users can set the home position and heading of the robot. Position

Ze Fei Teo 0 Feb 03, 2022
Monitor Live USB Plug In & Plug Out Events

I/O - Live USB Monitoring Author: Jonathan Scott @jonathandata1 Date: 3/13/2021 CURRENT VERSION 1.0 This is just a simple bash script that calls a pyt

Jonathan Scott 17 Dec 03, 2022
Automatically draw a KiCad schematic for a circuit prototyped on a breadboard.

Schematic-o-matic Schematic-o-matic automatically draws a KiCad schematic for a circuit prototyped on a breadboard. How It Works The first step in the

Nick Bild 22 Oct 11, 2022
A module for cross-platform control of the mouse and keyboard in python that is simple to install and use.

PyUserInput PyUserInput is a group project so we've moved the project over to a group organization: https://github.com/PyUserInput/PyUserInput . That

Paul Barton 1k Dec 27, 2022