Face Mask Detection is a project to determine whether someone is wearing mask or not, using deep neural network.

Overview

face-mask-detection

Face Mask Detection is a project to determine whether someone is wearing mask or not, using deep neural network. It contains 3 scripts that provides training new model, testing model with specific images and live face mask detection.
The gif below shows how live face mask detection works.

Result gif

This model has trained with 10k face images (5k without mask and 5k with mask - dataset sources are mentioned in dataset section) using 3 layers of 2d CNN as main process. (the complete summary of model layers is given below)
Model: "sequential"                                               
_________________________________________________________________ 
Layer (type)                 Output Shape              Param #    
================================================================= 
rescaling (Rescaling)        (None, 180, 180, 3)       0          
_________________________________________________________________ 
conv2d (Conv2D)              (None, 180, 180, 16)      448        
_________________________________________________________________ 
max_pooling2d (MaxPooling2D) (None, 90, 90, 16)        0          
_________________________________________________________________ 
conv2d_1 (Conv2D)            (None, 90, 90, 32)        4640       
_________________________________________________________________ 
max_pooling2d_1 (MaxPooling2 (None, 45, 45, 32)        0          
_________________________________________________________________ 
conv2d_2 (Conv2D)            (None, 45, 45, 64)        18496      
_________________________________________________________________ 
max_pooling2d_2 (MaxPooling2 (None, 22, 22, 64)        0          
_________________________________________________________________ 
flatten (Flatten)            (None, 30976)             0          
_________________________________________________________________ 
dense (Dense)                (None, 128)               3965056    
_________________________________________________________________ 
dense_1 (Dense)              (None, 2)                 258        
================================================================= 
Total params: 3,988,898                                           
Trainable params: 3,988,898                                       
Non-trainable params: 0                                           
_________________________________________________________________ 

This model has reached fantastic result of 0.9990 accuracy with test dataset( 20% ). moreover, it only takes 10 epochs to reach this result. As the graph below illustrates, from the very first epoch, accuracy is more than 0.98 and by 10th epoch, loss roughly touchs 10e-7 that is a great result.

loss_acc

usage

Currently, there is not any argument parser available, so if you want change any default variable, you can change variables in configurations section at the begining of each script. schema is given below.

DATASET_PATH = "./dataset/" # to provide dataset, create a directory containing all classes as a directory
# and put images to relevant class. ex:
# dataset --> no_mask --> img1, img2, ...
#             correct_mask --> img1, img2, ...
OUTPUT_MODEL_PATH = 'saved_model/my_model' # output file to save model
OUTPUT_WEIGHTS_PATH = 'saved_weight/my_checkpoint2' # output file to save model's weights
EPOCHS = 10 # number of epochs
BATCH_SIZE = 32 # bach size
IMG_HEIGHT = 180 # image height
IMG_WIDTH = 180 # image width

To train a new model, after changing the configuration above, just run:

python train_model.py

To test the trained model with some specific images, run:

python test_model.py img1.jpg img2.jpg ....

At last, to run live detection mode, run:

python live_detection.py

dataset

The dataset we have used, is the combination of Flickr-Faces-HQ (FFHQ) dataset and MaskedFace-Net dataset. 5k images from each dataset. (summation of both datasets is more than 180k images)

You might also like...
Face Library is an open source package for accurate and real-time face detection and recognition
Face Library is an open source package for accurate and real-time face detection and recognition

Face Library Face Library is an open source package for accurate and real-time face detection and recognition. The package is built over OpenCV and us

AI Face Mesh: This is a simple face mesh detection program based on Artificial intelligence.

AI Face Mesh: This is a simple face mesh detection program based on Artificial Intelligence which made with Python. It's able to detect 468 different

Cancer-and-Tumor-Detection-Using-Inception-model - In this repo i am gonna show you how i did cancer/tumor detection in lungs using deep neural networks, specifically here the Inception model by google.
Cancer-and-Tumor-Detection-Using-Inception-model - In this repo i am gonna show you how i did cancer/tumor detection in lungs using deep neural networks, specifically here the Inception model by google.

Cancer-and-Tumor-Detection-Using-Inception-model In this repo i am gonna show you how i did cancer/tumor detection in lungs using deep neural networks

Jetson Nano-based smart camera system that measures crowd face mask usage in real-time.
Jetson Nano-based smart camera system that measures crowd face mask usage in real-time.

MaskCam MaskCam is a prototype reference design for a Jetson Nano-based smart camera system that measures crowd face mask usage in real-time, with all

A short code in python, Enchpyter, is able to encrypt and decrypt words as you determine, of course

Enchpyter Enchpyter is a program do encrypt and decrypt any word you want (just letters). You enter how many letters jumps and write the word, so, the

An e-commerce company wants to segment its customers and determine marketing strategies according to these segments.

customer_segmentation_with_rfm Business Problem : An e-commerce company wants to

Program your own vulkan.gpuinfo.org query in Python. Used to determine baseline hardware for WebGPU.

query-gpuinfo-data License This software is not presently released under a license. The data in data/ is obtained under CC BY 4.0 as specified there.

This project contains an implemented version of Face Detection using OpenCV and Mediapipe. This is a code snippet and can be used in projects.
This project contains an implemented version of Face Detection using OpenCV and Mediapipe. This is a code snippet and can be used in projects.

Live-Face-Detection Project Description: In this project, we will be using the live video feed from the camera to detect Faces. It will also detect so

PocketNet: Extreme Lightweight Face Recognition Network using Neural Architecture Search and Multi-Step Knowledge Distillation
PocketNet: Extreme Lightweight Face Recognition Network using Neural Architecture Search and Multi-Step Knowledge Distillation

PocketNet This is the official repository of the paper: PocketNet: Extreme Lightweight Face Recognition Network using Neural Architecture Search and M

Releases(v0.1)
Owner
amirsalar
amirsalar
Official repository of ICCV21 paper "Viewpoint Invariant Dense Matching for Visual Geolocalization"

Viewpoint Invariant Dense Matching for Visual Geolocalization: PyTorch implementation This is the implementation of the ICCV21 paper: G Berton, C. Mas

Gabriele Berton 44 Jan 03, 2023
Distributed Evolutionary Algorithms in Python

DEAP DEAP is a novel evolutionary computation framework for rapid prototyping and testing of ideas. It seeks to make algorithms explicit and data stru

Distributed Evolutionary Algorithms in Python 4.9k Jan 05, 2023
Conditional Generative Adversarial Networks (CGAN) for Mobility Data Fusion

This code implements the paper, Kim et al. (2021). Imputing Qualitative Attributes for Trip Chains Extracted from Smart Card Data Using a Conditional Generative Adversarial Network. Transportation Re

Eui-Jin Kim 2 Feb 03, 2022
Translate darknet to tensorflow. Load trained weights, retrain/fine-tune using tensorflow, export constant graph def to mobile devices

Intro Real-time object detection and classification. Paper: version 1, version 2. Read more about YOLO (in darknet) and download weight files here. In

Trieu 6.1k Jan 04, 2023
Model Serving Made Easy

The easiest way to build Machine Learning APIs BentoML makes moving trained ML models to production easy: Package models trained with any ML framework

BentoML 4.4k Jan 08, 2023
Tensorflow implementation of Semi-supervised Sequence Learning (https://arxiv.org/abs/1511.01432)

Transfer Learning for Text Classification with Tensorflow Tensorflow implementation of Semi-supervised Sequence Learning(https://arxiv.org/abs/1511.01

DONGJUN LEE 82 Oct 22, 2022
A library of extension and helper modules for Python's data analysis and machine learning libraries.

Mlxtend (machine learning extensions) is a Python library of useful tools for the day-to-day data science tasks. Sebastian Raschka 2014-2020 Links Doc

Sebastian Raschka 4.2k Jan 02, 2023
Python scripts form performing stereo depth estimation using the HITNET model in Tensorflow Lite.

TFLite-HITNET-Stereo-depth-estimation Python scripts form performing stereo depth estimation using the HITNET model in Tensorflow Lite. Stereo depth e

Ibai Gorordo 22 Oct 20, 2022
Implementation of Online Label Smoothing in PyTorch

Online Label Smoothing Pytorch implementation of Online Label Smoothing (OLS) presented in Delving Deep into Label Smoothing. Introduction As the abst

83 Dec 14, 2022
RLBot Python bindings for the Rust crate rl_ball_sym

RLBot Python bindings for rl_ball_sym 0.6 Prerequisites: Rust & Cargo Build Tools for Visual Studio RLBot - Verify that the file %localappdata%\RLBotG

Eric Veilleux 2 Nov 25, 2022
Continuous Security Group Rule Change Detection & Response at scale

Introduction Get notified of Security Group Changes across all AWS Accounts & Regions in an AWS Organization, with the ability to respond/revert those

Raajhesh Kannaa Chidambaram 3 Aug 13, 2022
Code of paper "CDFI: Compression-Driven Network Design for Frame Interpolation", CVPR 2021

CDFI (Compression-Driven-Frame-Interpolation) [Paper] (Coming soon...) | [arXiv] Tianyu Ding*, Luming Liang*, Zhihui Zhu, Ilya Zharkov IEEE Conference

Tianyu Ding 95 Dec 04, 2022
Multi-Object Tracking in Satellite Videos with Graph-Based Multi-Task Modeling

TGraM Multi-Object Tracking in Satellite Videos with Graph-Based Multi-Task Modeling, Qibin He, Xian Sun, Zhiyuan Yan, Beibei Li, Kun Fu Abstract Rece

Qibin He 6 Nov 25, 2022
用强化学习DQN算法,训练AI模型来玩合成大西瓜游戏,提供Keras版本和PARL(paddle)版本

用强化学习玩合成大西瓜 代码地址:https://github.com/Sharpiless/play-daxigua-using-Reinforcement-Learning 用强化学习DQN算法,训练AI模型来玩合成大西瓜游戏,提供Keras版本、PARL(paddle)版本和pytorch版本

72 Dec 17, 2022
Repo for CReST: A Class-Rebalancing Self-Training Framework for Imbalanced Semi-Supervised Learning

CReST in Tensorflow 2 Code for the paper: "CReST: A Class-Rebalancing Self-Training Framework for Imbalanced Semi-Supervised Learning" by Chen Wei, Ki

Google Research 75 Nov 01, 2022
Official implementation of the paper Image Generators with Conditionally-Independent Pixel Synthesis https://arxiv.org/abs/2011.13775

CIPS -- Official Pytorch Implementation of the paper Image Generators with Conditionally-Independent Pixel Synthesis Requirements pip install -r requi

Multimodal Lab @ Samsung AI Center Moscow 201 Dec 21, 2022
UnFlow: Unsupervised Learning of Optical Flow with a Bidirectional Census Loss

UnFlow: Unsupervised Learning of Optical Flow with a Bidirectional Census Loss This repository contains the TensorFlow implementation of the paper UnF

Simon Meister 270 Nov 06, 2022
Lightwood is Legos for Machine Learning.

Lightwood is like Legos for Machine Learning. A Pytorch based framework that breaks down machine learning problems into smaller blocks that can be glu

MindsDB Inc 312 Jan 08, 2023
CVPR2021: Temporal Context Aggregation Network for Temporal Action Proposal Refinement

Temporal Context Aggregation Network - Pytorch This repo holds the pytorch-version codes of paper: "Temporal Context Aggregation Network for Temporal

Zhiwu Qing 63 Sep 27, 2022
Compact Bilinear Pooling for PyTorch

Compact Bilinear Pooling for PyTorch. This repository has a pure Python implementation of Compact Bilinear Pooling and Count Sketch for PyTorch. This

Grégoire Payen de La Garanderie 234 Dec 07, 2022