PyTorch code for BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation

Overview

BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation

This is the PyTorch code of the BLIP paper. The code has been tested on PyTorch 1.10. To install the dependencies, run

pip install -r requirements.txt

Catalog:

  • Inference demo
  • Pre-trained and finetuned checkpoints
  • Finetuning code for Image-Text Retrieval, Image Captioning, VQA, and NLVR2
  • Pre-training code
  • Download of bootstrapped pre-training datasets

Inference demo:

Run our interactive demo using Colab notebook (no GPU needed). The demo includes code for: (1) image captioning, (2) open-ended visual question answering, (3) multimodal / unimodal feature extraction.

Integrated into Huggingface Spaces 🤗 using Gradio. Try out the Web Demo Hugging Face Spaces

Pre-trained checkpoints:

Num. pre-train images BLIP w/ ViT-B BLIP w/ ViT-B and CapFilt-L BLIP w/ ViT-L
14M Download - -
129M Download Download Download

Finetuned checkpoints:

Task BLIP w/ ViT-B BLIP w/ ViT-B and CapFilt-L BLIP w/ ViT-L
Image-Text Retrieval (COCO) Download - Download
Image-Text Retrieval (Flickr30k) Download - Download
Image Captioning (COCO) - Download Download
VQA Download Download -
NLVR2 Download - -

Image-Text Retrieval:

  1. Download COCO and Flickr30k datasets from the original websites, and set 'image_root' in configs/retrieval_{dataset}.yaml accordingly.
  2. To evaluate the finetuned BLIP model on COCO, run:
python -m torch.distributed.run --nproc_per_node=8 train_retrieval.py \
--config ./configs/retrieval_coco.yaml \
--output_dir output/retrieval_coco \
--evaluate
  1. To finetune the pre-trained checkpoint using 8 A100 GPUs, first set 'pretrained' in configs/retrieval_coco.yaml as "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base.pth". Then run:
python -m torch.distributed.run --nproc_per_node=8 train_retrieval.py \
--config ./configs/retrieval_coco.yaml \
--output_dir output/retrieval_coco 

Image-Text Captioning:

  1. Download COCO and NoCaps datasets from the original websites, and set 'image_root' in configs/caption_coco.yaml and configs/nocaps.yaml accordingly.
  2. To evaluate the finetuned BLIP model on COCO, run:
python -m torch.distributed.run --nproc_per_node=8 train_caption.py --evaluate
  1. To evaluate the finetuned BLIP model on NoCaps, generate results with: (evaluation needs to be performed on official server)
python -m torch.distributed.run --nproc_per_node=8 eval_nocaps.py 
  1. To finetune the pre-trained checkpoint using 8 A100 GPUs, first set 'pretrained' in configs/caption_coco.yaml as "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model*_base.pth". Then run:
python -m torch.distributed.run --nproc_per_node=8 train_caption.py 

VQA:

  1. Download VQA v2 dataset and Visual Genome dataset from the original websites, and set 'vqa_root' and 'vg_root' in configs/vqa.yaml.
  2. To evaluate the finetuned BLIP model, generate results with: (evaluation needs to be performed on official server)
python -m torch.distributed.run --nproc_per_node=8 train_vqa.py --evaluate
  1. To finetune the pre-trained checkpoint using 16 A100 GPUs, first set 'pretrained' in configs/vqa.yaml as "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model*_base.pth". Then run:
python -m torch.distributed.run --nproc_per_node=16 train_vqa.py 

NLVR2:

  1. Download NLVR2 dataset from the original websites, and set 'image_root' in configs/nlvr.yaml.
  2. To evaluate the finetuned BLIP model, run
python -m torch.distributed.run --nproc_per_node=8 train_nlvr.py --evaluate
  1. To finetune the pre-trained checkpoint using 16 A100 GPUs, first set 'pretrained' in configs/nlvr.yaml as "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base.pth". Then run:
python -m torch.distributed.run --nproc_per_node=16 train_nlvr.py 

Pre-train:

  1. Prepare training json files where each json file contains a list. Each item in the list is a dictonary with two key-value pairs: {'image': path_of_image, 'caption': text_of_image}.
  2. In configs/pretrain.yaml, set 'train_file' as the paths for the json files .
  3. Pre-train the model using 8 A100 GPUs:
python -m torch.distributed.run --nproc_per_node=8 pretrain.py --config ./configs/Pretrain.yaml --output_dir output/Pretrain 

Pre-training datasets download:

We provide bootstrapped pre-training datasets as json files. Each json file contains a list. Each item in the list is a dictonary with two key-value pairs: {'url': url_of_image, 'caption': text_of_image}.

Image source Filtered web caption Filtered synthetic caption Filtered synthetic caption by ViT-L
CC3M+CC12M+SBU Download Download Download
LAION115M Download Download Download

Citation

If you find this code to be useful for your research, please consider citing.

@misc{li2022blip,
      title={BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation}, 
      author={Junnan Li and Dongxu Li and Caiming Xiong and Steven Hoi},
      year={2022},
      eprint={2201.12086},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Acknowledgement

The implementation of BLIP relies on resources from ALBEF, Huggingface Transformers, and timm. We thank the original authors for their open-sourcing.

Owner
Salesforce
A variety of vendor agnostic projects which power Salesforce
Salesforce
Source code release of the paper: Knowledge-Guided Deep Fractal Neural Networks for Human Pose Estimation.

GNet-pose Project Page: http://guanghan.info/projects/guided-fractal/ UPDATE 9/27/2018: Prototxts and model that achieved 93.9Pck on LSP dataset. http

Guanghan Ning 83 Nov 21, 2022
Official Implementation for "StyleCLIP: Text-Driven Manipulation of StyleGAN Imagery" (ICCV 2021 Oral)

StyleCLIP: Text-Driven Manipulation of StyleGAN Imagery (ICCV 2021 Oral) Run this model on Replicate Optimization: Global directions: Mapper: Check ou

3.3k Jan 05, 2023
Compare GAN code.

Compare GAN This repository offers TensorFlow implementations for many components related to Generative Adversarial Networks: losses (such non-saturat

Google 1.8k Jan 05, 2023
🛰️ List of earth observation companies and job sites

Earth Observation Companies & Jobs source Portals & Jobs Geospatial Geospatial jobs newsletter: ~biweekly newsletter with geospatial jobs by Ali Ahmad

Dahn 64 Dec 27, 2022
Pytorch code for our paper "Feedback Network for Image Super-Resolution" (CVPR2019)

Feedback Network for Image Super-Resolution [arXiv] [CVF] [Poster] Update: Our proposed Gated Multiple Feedback Network (GMFN) will appear in BMVC2019

Zhen Li 539 Jan 06, 2023
Official PyTorch Implementation of "Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs". NeurIPS 2020.

Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs This repository is the implementation of SELAR. Dasol Hwang* , Jinyoung Pa

MLV Lab (Machine Learning and Vision Lab at Korea University) 48 Nov 09, 2022
Deep Learning pipeline for motor-imagery classification.

BCI-ToolBox 1. Introduction BCI-ToolBox is deep learning pipeline for motor-imagery classification. This repo contains five models: ShallowConvNet, De

DongHee 18 Oct 31, 2022
Script that receives an Image (original) and a set of images to be used as "pixels" in reconstruction of the Original image using the set of images as "pixels"

picinpics Script that receives an Image (original) and a set of images to be used as "pixels" in reconstruction of the Original image using the set of

RodrigoCMoraes 1 Oct 24, 2021
Explainer for black box models that predict molecule properties

Explaining why that molecule exmol is a package to explain black-box predictions of molecules. The package uses model agnostic explanations to help us

White Laboratory 172 Dec 19, 2022
Supplemental learning materials for "Fourier Feature Networks and Neural Volume Rendering"

Fourier Feature Networks and Neural Volume Rendering This repository is a companion to a lecture given at the University of Cambridge Engineering Depa

Matthew A Johnson 133 Dec 26, 2022
This package implements the algorithms introduced in Smucler, Sapienza, and Rotnitzky (2020) to compute optimal adjustment sets in causal graphical models.

optimaladj: A library for computing optimal adjustment sets in causal graphical models This package implements the algorithms introduced in Smucler, S

Facundo Sapienza 6 Aug 04, 2022
Causal estimators for use with WhyNot

WhyNot Estimators A collection of causal inference estimators implemented in Python and R to pair with the Python causal inference library whynot. For

ZYKLS 8 Apr 06, 2022
Code for CVPR2021 paper 'Where and What? Examining Interpretable Disentangled Representations'.

PS-SC GAN This repository contains the main code for training a PS-SC GAN (a GAN implemented with the Perceptual Simplicity and Spatial Constriction c

Xinqi/Steven Zhu 40 Dec 16, 2022
Predict multi paths to a moving person depending on his trajectory history.

Multi-future Trajectory Prediction The project is about using the Multiverse model to make possible multible-future trajectory prediction for a seen p

Said Gamal 1 Jan 18, 2022
(CVPR 2022) A minimalistic mapless end-to-end stack for joint perception, prediction, planning and control for self driving.

LAV Learning from All Vehicles Dian Chen, Philipp Krähenbühl CVPR 2022 (also arXiV 2203.11934) This repo contains code for paper Learning from all veh

Dian Chen 300 Dec 15, 2022
Meta-TTS: Meta-Learning for Few-shot SpeakerAdaptive Text-to-Speech

Meta-TTS: Meta-Learning for Few-shot SpeakerAdaptive Text-to-Speech This repository is the official implementation of "Meta-TTS: Meta-Learning for Few

Sung-Feng Huang 128 Dec 25, 2022
The code repository for "PyCIL: A Python Toolbox for Class-Incremental Learning" in PyTorch.

PyCIL: A Python Toolbox for Class-Incremental Learning Introduction • Methods Reproduced • Reproduced Results • How To Use • License • Acknowledgement

Fu-Yun Wang 258 Dec 31, 2022
Plenoxels: Radiance Fields without Neural Networks

Plenoxels: Radiance Fields without Neural Networks Alex Yu*, Sara Fridovich-Keil*, Matthew Tancik, Qinhong Chen, Benjamin Recht, Angjoo Kanazawa UC Be

Sara Fridovich-Keil 81 Dec 25, 2022
GraphGT: Machine Learning Datasets for Graph Generation and Transformation

GraphGT: Machine Learning Datasets for Graph Generation and Transformation Dataset Website | Paper Installation Using pip To install the core environm

y6q9 50 Aug 18, 2022
Official implementation of EfficientPose

EfficientPose This is the official implementation of EfficientPose. We based our work on the Keras EfficientDet implementation xuannianz/EfficientDet

2 May 17, 2022