Official code for: A Probabilistic Hard Attention Model For Sequentially Observed Scenes

Overview

"A Probabilistic Hard Attention Model For Sequentially Observed Scenes"

Authors: Samrudhdhi Rangrej, James Clark Accepted to: BMVC'21 framework A recurrent attention model sequentially observes glimpses from an image and predicts a class label. At time t, the model actively observes a glimpse gt and its coordinates lt. Given gt and lt, the feed-forward module F extracts features ft, and the recurrent module R updates a hidden state to ht. Using an updated hidden state ht, the linear classifier C predicts the class distribution p(y|ht). At time t+1, the model assesses various candidate locations l before attending an optimal one. It predicts p(y|g,l,ht) ahead of time and selects the candidate l that maximizes KL[p(y|g,l,ht)||p(y|ht)]. The model synthesizes the features of g using a Partial VAE to approximate p(y|g,l,ht) without attending to the glimpse g. The normalizing flow-based encoder S predicts the approximate posterior q(z|ht). The decoder D uses a sample z~q(z|ht) to synthesize a feature map f~ containing features of all glimpses. The model uses f~(l) as features of a glimpse at location l and evaluates p(y|g,l,ht)=p(y|f~(l),ht). Dashed arrows show a path to compute the lookahead class distribution p(y|f~(l),ht).

Requirements:

torch==1.8.1, torchvision==0.9.1, tensorboard==2.5.0, fire==0.4.0

Datasets:

Training a model

Use main.py to train and evaluate the model.

Arguments

  • dataset: one of 'svhn', 'cifar10', 'cifar100', 'cinic10', 'tinyimagenet'
  • datapath: path to the downloaded datasets
  • lr: learning rate
  • training_phase: one of 'first', 'second', 'third'
  • ccebal: coefficient for cross entropy loss
  • batch: batch-size for training
  • batchv: batch-size for evaluation
  • T: maximum time-step
  • logfolder: path to log directory
  • epochs: number of training epochs
  • pretrain_checkpoint: checkpoint for pretrained model from previous training phase

Example commands to train the model for SVHN dataset are as follows. Training Stage one

python3 main.py \
    --dataset='svhn' \
    --datapath='./data/' \
    --lr=0.001 \
    --training_phase='first' \
    --ccebal=1 \
    --batch=64 \
    --batchv=64 \
    --T=7 \
    --logfolder='./svhn_log_first' \
    --epochs=1000 \
    --pretrain_checkpoint=None

Training Stage two

python3 main.py \
    --dataset='svhn' \
    --datapath='./data/' \
    --lr=0.001 \
    --training_phase='second' \
    --ccebal=0 \
    --batch=64 \
    --batchv=64 \
    --T=7 \
    --logfolder='./svhn_log_second' \
    --epochs=100 \
    --pretrain_checkpoint='./svhn_log_first/weights_f_1000.pth'

Training Stage three

python3 main.py \
    --dataset='svhn' \
    --datapath='./data/' \
    --lr=0.001 \
    --training_phase='third' \
    --ccebal=16 \
    --batch=64 \
    --batchv=64 \
    --T=7 \
    --logfolder='./svhn_log_third' \
    --epochs=100 \
    --pretrain_checkpoint='./svhn_log_second/weights_f_100.pth'

Visualization of attention policy for a CIFAR-10 image

example The top row shows the entire image and the EIG maps for t=1 to 6. The bottom row shows glimpses attended by our model. The model observes the first glimpse at a random location. Our model observes a glimpse of size 8x8. The glimpses overlap with the stride of 4, resulting in a 7x7 grid of glimpses. The EIG maps are of size 7x7 and are upsampled for the display. We display the entire image for reference; our model never observes the whole image.

Acknowledgement

Major parts of neural spline flows implementation are borrowed from Karpathy's pytorch-normalizing-flows.

Open source repository for the code accompanying the paper 'Non-Rigid Neural Radiance Fields Reconstruction and Novel View Synthesis of a Deforming Scene from Monocular Video'.

Non-Rigid Neural Radiance Fields This is the official repository for the project "Non-Rigid Neural Radiance Fields: Reconstruction and Novel View Synt

Facebook Research 296 Dec 29, 2022
Official pytorch implementation of "Scaling-up Disentanglement for Image Translation", ICCV 2021.

Official pytorch implementation of "Scaling-up Disentanglement for Image Translation", ICCV 2021.

Aviv Gabbay 41 Nov 29, 2022
CS5242_2021 - Neural Networks and Deep Learning, NUS CS5242, 2021

CS5242_2021 Neural Networks and Deep Learning, NUS CS5242, 2021 Cloud Machine #1 : Google Colab (Free GPU) Follow this Notebook installation : https:/

Xavier Bresson 165 Oct 25, 2022
Api's bulid in Flask perfom to manage Todo Task.

Citymall-task Api's bulid in Flask perfom to manage Todo Task. Installation Requrements : Python: 3.10.0 MongoDB create .env file with variables DB_UR

Aisha Tayyaba 1 Dec 17, 2021
Code for the paper "Graph Attention Tracking". (CVPR2021)

SiamGAT 1. Environment setup This code has been tested on Ubuntu 16.04, Python 3.5, Pytorch 1.2.0, CUDA 9.0. Please install related libraries before r

122 Dec 24, 2022
Personals scripts using ageitgey/face_recognition

HOW TO USE pip3 install requirements.txt Add some pictures of known people in the folder 'people' : a) Create a folder called by the name of the perso

Antoine Bollengier 1 Jan 06, 2022
Checkout some cool self-projects you can try your hands on to curb your boredom this December!

SoC-Winter Checkout some cool self-projects you can try your hands on to curb your boredom this December! These are short projects that you can do you

Web and Coding Club, IIT Bombay 29 Nov 08, 2022
Near-Optimal Sparse Allreduce for Distributed Deep Learning (published in PPoPP'22)

Near-Optimal Sparse Allreduce for Distributed Deep Learning (published in PPoPP'22) Ok-Topk is a scheme for distributed training with sparse gradients

Shigang Li 9 Oct 29, 2022
Mercury: easily convert Python notebook to web app and share with others

Mercury Share your Python notebooks with others Easily convert your Python notebooks into interactive web apps by adding parameters in YAML. Simply ad

MLJAR 2.2k Dec 27, 2022
Analyzes your GitHub Profile and presents you with a report on how likely you are to become the next MLH Fellow!

Fellowship Prediction GitHub Profile Comparative Analysis Tool Built with BentoML Table of Contents: Features Disclaimer Technologies Used Contributin

Damir Temir 51 Dec 29, 2022
How Do Adam and Training Strategies Help BNNs Optimization? In ICML 2021.

AdamBNN This is the pytorch implementation of our paper "How Do Adam and Training Strategies Help BNNs Optimization?", published in ICML 2021. In this

Zechun Liu 47 Sep 20, 2022
Next-gen Rowhammer fuzzer that uses non-uniform, frequency-based patterns.

Blacksmith Rowhammer Fuzzer This repository provides the code accompanying the paper Blacksmith: Scalable Rowhammering in the Frequency Domain that is

Computer Security Group @ ETH Zurich 173 Nov 16, 2022
Unrestricted Facial Geometry Reconstruction Using Image-to-Image Translation

Unrestricted Facial Geometry Reconstruction Using Image-to-Image Translation [Arxiv] [Video] Evaluation code for Unrestricted Facial Geometry Reconstr

Matan Sela 242 Dec 30, 2022
LSTM Neural Networks for Spectroscopic Studies of Type Ia Supernovae

Package Description The difficulties in acquiring spectroscopic data have been a major challenge for supernova surveys. snlstm is developed to provide

7 Oct 11, 2022
PyTorch implementation of Trust Region Policy Optimization

PyTorch implementation of TRPO Try my implementation of PPO (aka newer better variant of TRPO), unless you need to you TRPO for some specific reasons.

Ilya Kostrikov 366 Nov 15, 2022
Head2Toe: Utilizing Intermediate Representations for Better OOD Generalization

Head2Toe: Utilizing Intermediate Representations for Better OOD Generalization Code for reproducing our results in the Head2Toe paper. Paper: arxiv.or

Google Research 62 Dec 12, 2022
Implementation of paper "DeepTag: A General Framework for Fiducial Marker Design and Detection"

Implementation of paper DeepTag: A General Framework for Fiducial Marker Design and Detection. Project page: https://herohuyongtao.github.io/research/

Yongtao Hu 46 Dec 12, 2022
Out-of-Town Recommendation with Travel Intention Modeling (AAAI2021)

TrainOR_AAAI21 This is the official implementation of our AAAI'21 paper: Haoran Xin, Xinjiang Lu, Tong Xu, Hao Liu, Jingjing Gu, Dejing Dou, Hui Xiong

Jack Xin 13 Oct 19, 2022
It is an open dataset for object detection in remote sensing images.

RSOD-Dataset It is an open dataset for object detection in remote sensing images. The dataset includes aircraft, oiltank, playground and overpass. The

136 Dec 08, 2022
BLEURT is a metric for Natural Language Generation based on transfer learning.

BLEURT: a Transfer Learning-Based Metric for Natural Language Generation BLEURT is an evaluation metric for Natural Language Generation. It takes a pa

Google Research 492 Jan 05, 2023