Code corresponding to The Introspective Agent: Interdependence of Strategy, Physiology, and Sensing for Embodied Agents

Overview

The Introspective Agent:

Interdependence of Strategy, Physiology, and Sensing for Embodied Agents

This is the code corresponding to The Introspective Agent: Interdependence of Strategy, Physiology, and Sensing for Embodied Agents by Sarah Pratt, Luca Weihs, and Ali Farhadi.

Abstract:

The last few years have witnessed substantial progress in the field of embodied AI where artificial agents, mirroring biological counterparts, are now able to learn from interaction to accomplish complex tasks. Despite this success, biological organisms still hold one large advantage over these simulated agents: adaptation. While both living and simulated agents make decisions to achieve goals (strategy), biological organisms have evolved to understand their environment (sensing) and respond to it (physiology). The net gain of these factors depends on the environment, and organisms have adapted accordingly. For example, in a low vision aquatic environment some fish have evolved specific neurons which offer a predictable, but incredibly rapid, strategy to escape from predators. Mammals have lost these reactive systems, but they have a much larger fields of view and brain circuitry capable of understanding many future possibilities. While traditional embodied agents manipulate an environment to best achieve a goal, we argue for an introspective agent, which considers its own abilities in the context of its environment. We show that different environments yield vastly different optimal designs, and increasing long-term planning is often far less beneficial than other improvements, such as increased physical ability. We present these findings to broaden the definition of improvement in embodied AI passed increasingly complex models. Just as in nature, we hope to reframe strategy as one tool, among many, to succeed in an environment

Code

Training

To train the predator and prey, run the following command:

python train.py --planning PLANNING --speed SPEED --vision VISION

Planning has the options of ['low', 'mid', 'high'].
Speed has the options of ['veryslow', 'slow', 'average', 'fast', 'veryfast'].
Vision has the options of ['short', 'medium', 'long'].

So an example command looks like this:

python train.py --planning high --speed average --vision long

Prey and Predator weights will save every 1000 gradient updates under a folder of the form log/planning_high_vision_long_speed_average (as an example corresponding to the example train command)

Evaluation

Our evaluation metric is the number of times that the predator is able to catch the prey in 10,000 steps. The location of the prey is randomly reset after it is caught by the predator (or after 400 steps to avoid outlier episodes).

To evaluate the training run, use the command:

python eval.py --prey-weights ./PATH/TO/PREY/WEIGHTS --predator-weights ./PATH/TO/PREY/WEIGHTS --speed fast --vision short --planning high

which will output a string of the form:

Number of prey caught in 10,000 steps is NUMBER

To visualize a video of the evaluation run, use the flag --video

Prerequisite packages can be found in requirements.txt

If you found this repository useful, please consider citing:

@article{pratt2022introspective,
  title={The Introspective Agent: Interdependence of Strategy, Physiology, and Sensing for Embodied Agents},
  author={Pratt, Sarah and Weihs, Luca and Farhadi, Ali},
  journal={arXiv preprint arXiv:2201.00411},
  year={2022}
}
you can add any codes in any language by creating its respective folder (if already not available).

HACKTOBERFEST-2021-WEB-DEV Beginner-Hacktoberfest Need Your first pr for hacktoberfest 2k21 ? come on in About This is repository of Responsive Portfo

Suman Sharma 8 Oct 17, 2022
Runtime type annotations for the shape, dtype etc. of PyTorch Tensors.

torchtyping Type annotations for a tensor's shape, dtype, names, ... Turn this: def batch_outer_product(x: torch.Tensor, y: torch.Tensor) - torch.Ten

Patrick Kidger 1.2k Jan 03, 2023
A set of tools for converting a darknet dataset to COCO format working with YOLOX

darknet格式数据→COCO darknet训练数据目录结构(详情参见dataset/darknet): darknet ├── class.names ├── gen_config.data ├── gen_train.txt ├── gen_valid.txt └── images

RapidAI-NG 148 Jan 03, 2023
Source code for our paper "Learning to Break Deep Perceptual Hashing: The Use Case NeuralHash"

Learning to Break Deep Perceptual Hashing: The Use Case NeuralHash Abstract: Apple recently revealed its deep perceptual hashing system NeuralHash to

<a href=[email protected]"> 11 Dec 03, 2022
Fast and accurate optimisation for registration with little learningconvexadam

convexAdam Learn2Reg 2021 Submission Fast and accurate optimisation for registration with little learning Excellent results on Learn2Reg 2021 challeng

17 Dec 06, 2022
GAN-generated image detection based on CNNs

GAN-image-detection This repository contains a GAN-generated image detector developed to distinguish real images from synthetic ones. The detector is

Image and Sound Processing Lab 17 Dec 15, 2022
An Open-Source Package for Information Retrieval.

OpenMatch An Open-Source Package for Information Retrieval. 😃 What's New Top Spot on TREC-COVID Challenge (May 2020, Round2) The twin goals of the ch

THUNLP 439 Dec 27, 2022
Pytorch implementation of the paper "Topic Modeling Revisited: A Document Graph-based Neural Network Perspective"

Graph Neural Topic Model (GNTM) This is the pytorch implementation of the paper "Topic Modeling Revisited: A Document Graph-based Neural Network Persp

Dazhong Shen 8 Sep 14, 2022
High performance distributed framework for training deep learning recommendation models based on PyTorch.

High performance distributed framework for training deep learning recommendation models based on PyTorch.

340 Dec 30, 2022
Estimating Example Difficulty using Variance of Gradients

Estimating Example Difficulty using Variance of Gradients This repository contains source code necessary to reproduce some of the main results in the

Chirag Agarwal 48 Dec 26, 2022
CM-NAS: Cross-Modality Neural Architecture Search for Visible-Infrared Person Re-Identification (ICCV2021)

CM-NAS Official Pytorch code of paper CM-NAS: Cross-Modality Neural Architecture Search for Visible-Infrared Person Re-Identification in ICCV2021. Vis

JDAI-CV 40 Nov 25, 2022
Implementation for "Conditional entropy minimization principle for learning domain invariant representation features"

Implementation for "Conditional entropy minimization principle for learning domain invariant representation features". The code is reproduced from thi

1 Nov 02, 2022
Source code for 2021 ICCV paper "In-the-Wild Single Camera 3D Reconstruction Through Moving Water Surfaces"

In-the-Wild Single Camera 3D Reconstruction Through Moving Water Surfaces This is the PyTorch implementation for 2021 ICCV paper "In-the-Wild Single C

27 Dec 06, 2022
Unofficial PyTorch implementation of Google AI's VoiceFilter system

VoiceFilter Note from Seung-won (2020.10.25) Hi everyone! It's Seung-won from MINDs Lab, Inc. It's been a long time since I've released this open-sour

MINDs Lab 883 Jan 07, 2023
Anomaly detection related books, papers, videos, and toolboxes

Anomaly Detection Learning Resources Outlier Detection (also known as Anomaly Detection) is an exciting yet challenging field, which aims to identify

Yue Zhao 6.7k Dec 31, 2022
Python Library for Signal/Image Data Analysis with Transport Methods

PyTransKit Python Transport Based Signal Processing Toolkit Website and documentation: https://pytranskit.readthedocs.io/ Installation The library cou

24 Dec 23, 2022
This is the repo of the manuscript "Dual-branch Attention-In-Attention Transformer for speech enhancement"

DB-AIAT: A Dual-branch attention-in-attention transformer for single-channel SE

Guochen Yu 68 Dec 16, 2022
Latte: Cross-framework Python Package for Evaluation of Latent-based Generative Models

Cross-framework Python Package for Evaluation of Latent-based Generative Models Latte Latte (for LATent Tensor Evaluation) is a cross-framework Python

Karn Watcharasupat 30 Sep 08, 2022
SingleVC performs any-to-one VC, which is an important component of MediumVC project.

SingleVC performs any-to-one VC, which is an important component of MediumVC project. Here is the official implementation of the paper, MediumVC.

谷下雨 26 Dec 28, 2022
🔥 Real-time Super Resolution enhancement (4x) with content loss and relativistic adversarial optimization 🔥

🔥 Real-time Super Resolution enhancement (4x) with content loss and relativistic adversarial optimization 🔥

Rishik Mourya 48 Dec 20, 2022