Implements MLP-Mixer: An all-MLP Architecture for Vision.

Overview

MLP-Mixer-CIFAR10

This repository implements MLP-Mixer as proposed in MLP-Mixer: An all-MLP Architecture for Vision. The paper introduces an all MLP (Multi-layer Perceptron) architecture for computer vision tasks. Yannic Kilcher walks through the architecture in this video.

Experiments reported in this repository are on CIFAR-10.

What's included?

  • Distributed training with mixed-precision.
  • Visualization of the token-mixing MLP weights.
  • A TensorBoard callback to keep track of the learned linear projections of the image patches.
Screen.Recording.2021-05-25.at.5.49.20.PM.mov

Notebooks

Note: These notebooks are runnable on Colab. If you don't have access to a tensor-core GPU, please disable the mixed-precision block while running the code.

Results

MLP-Mixer achieves competitive results. The figure below summarizes top-1 accuracies on CIFAR-10 test set with respect to varying MLP blocks.


Notable hyperparameters are:

  • Image size: 72x72
  • Patch size: 9x9
  • Hidden dimension for patches: 64
  • Hidden dimension for patches: 128

The table below reports the parameter counts for the different MLP-Mixer variants:


ResNet20 (0.571969 Million) achieves 78.14% under the exact same training configuration. Refer to this notebook for more details.

Models

You can reproduce the results reported above. The model files are available here.

Acknowledgements

ML-GDE Program for providing GCP credits.

You might also like...
An All-MLP solution for Vision, from Google AI
An All-MLP solution for Vision, from Google AI

MLP Mixer - Pytorch An All-MLP solution for Vision, from Google AI, in Pytorch. No convolutions nor attention needed! Yannic Kilcher video Install $ p

Implementation of
Implementation of "A MLP-like Architecture for Dense Prediction"

A MLP-like Architecture for Dense Prediction (arXiv) Updates (22/07/2021) Initial release. Model Zoo We provide CycleMLP models pretrained on ImageNet

Model search is a framework that implements AutoML algorithms for model architecture search at scale
Model search is a framework that implements AutoML algorithms for model architecture search at scale

Model search (MS) is a framework that implements AutoML algorithms for model architecture search at scale. It aims to help researchers speed up their exploration process for finding the right model architecture for their classification problems (i.e., DNNs with different types of layers).

A task-agnostic vision-language architecture as a step towards General Purpose Vision
A task-agnostic vision-language architecture as a step towards General Purpose Vision

Towards General Purpose Vision Systems By Tanmay Gupta, Amita Kamath, Aniruddha Kembhavi, and Derek Hoiem Overview Welcome to the official code base f

MLP-Like Vision Permutator for Visual Recognition (PyTorch)
MLP-Like Vision Permutator for Visual Recognition (PyTorch)

Vision Permutator: A Permutable MLP-Like Architecture for Visual Recognition (arxiv) This is a Pytorch implementation of our paper. We present Vision

code for paper
code for paper "Does Unsupervised Architecture Representation Learning Help Neural Architecture Search?"

Does Unsupervised Architecture Representation Learning Help Neural Architecture Search? Code for paper: Does Unsupervised Architecture Representation

Implementation of ResMLP, an all MLP solution to image classification, in Pytorch
Implementation of ResMLP, an all MLP solution to image classification, in Pytorch

ResMLP - Pytorch Implementation of ResMLP, an all MLP solution to image classification out of Facebook AI, in Pytorch Install $ pip install res-mlp-py

Implementation of gMLP, an all-MLP replacement for Transformers, in Pytorch
Implementation of gMLP, an all-MLP replacement for Transformers, in Pytorch

Implementation of gMLP, an all-MLP replacement for Transformers, in Pytorch

Episodic Transformer (E.T.) is a novel attention-based architecture for vision-and-language navigation. E.T. is based on a multimodal transformer that encodes language inputs and the full episode history of visual observations and actions.
Comments
  • Could patches number != MLP token mixing dimension?

    Could patches number != MLP token mixing dimension?

    I try to change the model into B/16 MLP-Mixer. is this setting, the patch number ( sequence length) != MLP token mixing dimension. But the code will report an error when it implements "x = layers.Add()([x, token_mixing])" because the two operation numbers have different shapes. Take an example, B/16 Settings: image 3232, 2D hidden layer 768, PP= 16*16, token mixing mlp dimentsion= 384, channel mlp dimension = 3072. Thus patch number ( sequence length) = 4, table value shape= (4, 768) When the code runs x = layers.Add()([x, token_mixing]) in the token mixing layer. rx shape=[4, 768], token_mixing shape = [384, 768]

    It is strange why the MLP-Mixer paper could set different parameters "patch number ( sequence length) != MLP token mixing dimensio"

    opened by LouiValley 2
  • Why the accuracy drops after epoch 100/100 (accuracy drops from 91% to 71%)

    Why the accuracy drops after epoch 100/100 (accuracy drops from 91% to 71%)

    I trained the Network ( NUM_MIXER_LAYERS =4 )

    At epoch 100:

    Epoch 100/100

    1/44 [..............................] - ETA: 1s - loss: 0.2472 - accuracy: 0.9160 3/44 [=>............................] - ETA: 1s - loss: 0.2424 - accuracy: 0.9162 5/44 [==>...........................] - ETA: 1s - loss: 0.2431 - accuracy: 0.9155 7/44 [===>..........................] - ETA: 1s - loss: 0.2424 - accuracy: 0.9154 9/44 [=====>........................] - ETA: 1s - loss: 0.2419 - accuracy: 0.9155 11/44 [======>.......................] - ETA: 1s - loss: 0.2423 - accuracy: 0.9150 13/44 [=======>......................] - ETA: 1s - loss: 0.2426 - accuracy: 0.9145 15/44 [=========>....................] - ETA: 1s - loss: 0.2430 - accuracy: 0.9142 17/44 [==========>...................] - ETA: 1s - loss: 0.2433 - accuracy: 0.9140 19/44 [===========>..................] - ETA: 1s - loss: 0.2435 - accuracy: 0.9138 21/44 [=============>................] - ETA: 0s - loss: 0.2438 - accuracy: 0.9136 23/44 [==============>...............] - ETA: 0s - loss: 0.2439 - accuracy: 0.9135 25/44 [================>.............] - ETA: 0s - loss: 0.2440 - accuracy: 0.9134 27/44 [=================>............] - ETA: 0s - loss: 0.2440 - accuracy: 0.9133 29/44 [==================>...........] - ETA: 0s - loss: 0.2442 - accuracy: 0.9132 31/44 [====================>.........] - ETA: 0s - loss: 0.2445 - accuracy: 0.9130 33/44 [=====================>........] - ETA: 0s - loss: 0.2447 - accuracy: 0.9129 35/44 [======================>.......] - ETA: 0s - loss: 0.2450 - accuracy: 0.9127 37/44 [========================>.....] - ETA: 0s - loss: 0.2454 - accuracy: 0.9125 39/44 [=========================>....] - ETA: 0s - loss: 0.2459 - accuracy: 0.9123 41/44 [==========================>...] - ETA: 0s - loss: 0.2463 - accuracy: 0.9121 43/44 [============================>.] - ETA: 0s - loss: 0.2469 - accuracy: 0.9119 44/44 [==============================] - 2s 46ms/step - loss: 0.2474 - accuracy: 0.9117 - val_loss: 1.1145 - val_accuracy: 0.7226

    Then it still have an extra training, 1/313 [..............................] - ETA: 24:32 - loss: 0.5860 - accuracy: 0.8125 8/313 [..............................] - ETA: 2s - loss: 1.2071 - accuracy: 0.6953  ..... 313/313 [==============================] - ETA: 0s - loss: 1.0934 - accuracy: 0.7161 313/313 [==============================] - 12s 22ms/step - loss: 1.0934 - accuracy: 0.7161 Test accuracy: 71.61

    opened by LouiValley 1
  • Consider either turning off auto-sharding or switching the auto_shard_policy to DATA

    Consider either turning off auto-sharding or switching the auto_shard_policy to DATA

    Excuse me, when I try to run it on the serve, it tips:

    Consider either turning off auto-sharding or switching the auto_shard_policy to DATA to shard this dataset. You can do this by creating a new tf.data.Options() object then setting options.experimental_distribute.auto_shard_policy = AutoShardPolicy.DATA before applying the options object to the dataset via dataset.with_options(options). 2021-11-21 11:59:20.861052: W tensorflow/python/util/util.cc:348] Sets are not currently considered sequences, but this may change in the future, so consider avoiding using them.

    BTW, my TensorFlow version is 2.4.0, how to fix this problem?

    opened by LouiValley 1
Releases(Models)
Owner
Sayak Paul
Trying to learn how machines learn.
Sayak Paul
Segmentation and Identification of Vertebrae in CT Scans using CNN, k-means Clustering and k-NN

Segmentation and Identification of Vertebrae in CT Scans using CNN, k-means Clustering and k-NN If you use this code for your research, please cite ou

41 Dec 08, 2022
PyTorch implementation of probabilistic deep forecast applied to air quality.

Probabilistic Deep Forecast PyTorch implementation of a paper, titled: Probabilistic Deep Learning to Quantify Uncertainty in Air Quality Forecasting

Abdulmajid Murad 13 Nov 16, 2022
Technical Analysis library in pandas for backtesting algotrading and quantitative analysis

bta-lib - A pandas based Technical Analysis Library bta-lib is pandas based technical analysis library and part of the backtrader family. Links Main P

DRo 393 Dec 20, 2022
Monocular 3D pose estimation. OpenVINO. CPU inference or iGPU (OpenCL) inference.

human-pose-estimation-3d-python-cpp RealSenseD435 (RGB) 480x640 + CPU Corei9 45 FPS (Depth is not used) 1. Run 1-1. RealSenseD435 (RGB) 480x640 + CPU

Katsuya Hyodo 8 Oct 03, 2022
Code accompanying the paper "Knowledge Base Completion Meets Transfer Learning"

Knowledge Base Completion Meets Transfer Learning This code accompanies the paper Knowledge Base Completion Meets Transfer Learning published at EMNLP

14 Nov 27, 2022
Hierarchical Metadata-Aware Document Categorization under Weak Supervision (WSDM'21)

Hierarchical Metadata-Aware Document Categorization under Weak Supervision This project provides a weakly supervised framework for hierarchical metada

Yu Zhang 53 Sep 17, 2022
The Empirical Investigation of Representation Learning for Imitation (EIRLI)

The Empirical Investigation of Representation Learning for Imitation (EIRLI)

Center for Human-Compatible AI 31 Nov 06, 2022
Official PyTorch implementation of the paper "Self-Supervised Relational Reasoning for Representation Learning", NeurIPS 2020 Spotlight.

Official PyTorch implementation of the paper: "Self-Supervised Relational Reasoning for Representation Learning" (2020), Patacchiola, M., and Storkey,

Massimiliano Patacchiola 135 Jan 03, 2023
Speckle-free Holography with Partially Coherent Light Sources and Camera-in-the-loop Calibration

Speckle-free Holography with Partially Coherent Light Sources and Camera-in-the-loop Calibration Project Page | Paper Yifan Peng*, Suyeon Choi*, Jongh

Stanford Computational Imaging Lab 19 Dec 11, 2022
A paper using optimal transport to solve the graph matching problem.

GOAT A paper using optimal transport to solve the graph matching problem. https://arxiv.org/abs/2111.05366 Repo structure .github: Files specifying ho

neurodata 8 Jan 04, 2023
Unsupervised Feature Ranking via Attribute Networks.

FRANe Unsupervised Feature Ranking via Attribute Networks (FRANe) converts a dataset into a network (graph) with nodes that correspond to the features

7 Sep 29, 2022
A Transformer-Based Feature Segmentation and Region Alignment Method For UAV-View Geo-Localization

University1652-Baseline [Paper] [Slide] [Explore Drone-view Data] [Explore Satellite-view Data] [Explore Street-view Data] [Video Sample] [中文介绍] This

Zhedong Zheng 335 Jan 06, 2023
Fake videos detection by tracing the source using video hashing retrieval.

Vision Transformer Based Video Hashing Retrieval for Tracing the Source of Fake Videos 🎉️ 📜 Directory Introduction VTL Trace Samples and Acc of Hash

56 Dec 22, 2022
Vanilla and Prototypical Networks with Random Weights for image classification on Omniglot and mini-ImageNet. Made with Python3.

vanilla-rw-protonets-project Vanilla Prototypical Networks and PNs with Random Weights for image classification on Omniglot and mini-ImageNet. Made wi

Giovani Candido 8 Aug 31, 2022
Fast and Context-Aware Framework for Space-Time Video Super-Resolution (VCIP 2021)

Fast and Context-Aware Framework for Space-Time Video Super-Resolution Preparation Dependencies PyTorch 1.2.0 CUDA 10.0 DCNv2 cd model/DCNv2 bash make

Xueheng Zhang 1 Mar 29, 2022
MediaPipe Kullanarak İleri Seviye Bilgisayarla Görü

MediaPipe Kullanarak İleri Seviye Bilgisayarla Görü

Burak Bagatarhan 12 Mar 29, 2022
Implementation of CoCa, Contrastive Captioners are Image-Text Foundation Models, in Pytorch

CoCa - Pytorch Implementation of CoCa, Contrastive Captioners are Image-Text Foundation Models, in Pytorch. They were able to elegantly fit in contras

Phil Wang 565 Dec 30, 2022
this is a lite easy to use virtual keyboard project for anyone to use

virtual_Keyboard this is a lite easy to use virtual keyboard project for anyone to use motivation I made this for this year's recruitment for RobEn AA

Mohamed Emad 3 Oct 23, 2021
Cervix ROI Segmentation Using U-NET

Cervix ROI Segmentation Using U-NET Overview This code illustrate how to segment the ROI in cervical images using U-NET. The ROI here meant to include

Scotty Kwok 35 Sep 14, 2022
FairEdit: Preserving Fairness in Graph Neural Networks through Greedy Graph Editing

FairEdit Relevent Publication FairEdit: Preserving Fairness in Graph Neural Networks through Greedy Graph Editing

5 Feb 04, 2022