Answer a series of contextually-dependent questions like they may occur in natural human-to-human conversations.

Overview

SCAI-QReCC-21

[leaderboards] [registration] [forum] [contact] [SCAI]

Answer a series of contextually-dependent questions like they may occur in natural human-to-human conversations.

  • Submission deadline: September 8, 2021 Extended: September 15, 2021
  • Results announcement: September 30, 2021
  • Workshop presentations: October 8, 2021

Data

[Zenodo] [original]

File names here refer to the respective files hosted on [Zenodo].

The passage collection (passages.zip) is 27.5GB with 54M passages!

The input format for the task (scai-qrecc21-[toy,training,test]-questions[,-rewritten].json) is a JSON file:

, "Turn_no": X, "Question": " " }, ... ]">
[
  {
    "Conversation_no": 
    
     ,
    "Turn_no": X,
    "Question": "
     
      "
  }, ...
]

     
    

With X being the number of the question in the conversation. Questions with the same Conversation_no are from the same conversation.

The questions-rewritten.json-files contain human rewritten questions that can be used by systems that do not want to participate in question rewriting.

Submission

Register for the task using this form. We will then send you your TIRA login once it is ready.

The challenge is hosted on TIRA. Participants are encouraged to upload their code and run the evaluation on the VMs provided by the platform to ensure reproducibility of the results. It is also possible to upload the submission as a single JSON file.

The submission format for the task is a JSON file similar to the input (all Model_xxx-fields are optional and you can omit them from the submission, e.g. provide only Conversation_no, Turn_no and Model_answer to get the EM and F1 scores for the generated answers):

, "Turn_no": X, "Model_rewrite": " ", "Model_passages": { " ": , ... }, "Model_answer": " " }, ... ]">
[
  {
    "Conversation_no": 
       
        ,
    "Turn_no": X,
    "Model_rewrite": "
        
         ",
    "Model_passages": { 
      "
         
          ": 
          
           , ...
    },
    "Model_answer": "
           
            " }, ... ] 
           
          
         
        
       

Example: scai-qrecc21-naacl-baseline.zip

You can use the code of our simple baseline to get started.

Software Submission

We recommend participants to upload (through SSH or RDP) their software/system to their dedicated TIRA virtual machine (assigned after registration), so that their runs can be reproduced and so that they can be easily applied to different data (of same format) in the future. The mail send to you after registration gives you the credentials to access the TIRA web interface and your VM. If you cannot connect to your VM, ensure it is powered on in the TIRA web interface.

Your software is expected to accept two arguments:

  • An input directory (named $inputDataset in TIRA) that contains the questions.json input file and passages-index-anserini directory. The latter contains a full Anserini index of the passage collection. Note that you need to install openjdk-11-jdk-headless to use it. We may be able to add more of such indices on request.
  • An output directory (named $outputDir in TIRA) into which your software needs to place the submission as run.json.

Install your software to your VM. Then go to the TIRA web interface and click "Add software". Specify the command to run your software (see the image for the simple baseline).

IMPORTANT: To ensure reproducibility, create a "Software" in the TIRA web interface for each parameter setting that you consider a submission to the challenge.

Click on "Run" to execute your software for the selected input dataset. Your VM will not be accessible while your system is running, be detached from the internet (to ensure your software is fully installed in your virtual machine), and afterwards restored to the state before the run. Since the test set is rather large (the simple baseline takes nearly 11 hours to complete), we highly recommend you first test your software on the scai-qrecc21-toy-dataset-2021-07-20 input dataset. This dataset contains the first conversation (6 turns/questions) only. For the test-dataset, send us a mail at [email protected] so that we unblind your results.

TIRA Interface: VM status and submission

Then go to the "Runs" section below and click on the blue (i)-icon of the software run to check the software output. You can also download the run from there.

NOTE: By submitting your software you retain full copyrights. You agree to grant us usage rights for evaluation of the corresponding data generated by your software. We agree not to share your software with a third party or use it for any purpose other than research.

Run Submission

You can upload a JSON file as a submission at https://www.tira.io/run-upload-scai-qrecc21.

TIRA Interface: VM status and submission

Please specify the name and a description of your run in the form. After a successful upload, the page will redirect you to the overview of all your submissions where you should evaluate your run to verify that your run is valid. At the "Runs" section, you can click on the blue (i)-icon to double-check your upload. You can also download the run from there.

Evaluation

[script]

Once you run your software or uploaded your run, "Run" the evaluator on that run through the TIRA web interface (below the software; works out-of-the-box).

TIRA Interface: Evaluation

Then go to the "Runs" section below and click on the blue (i)-icon of the evaluator run to see your scores.

Ground truth

We use the QReCC paper annotations in the initial phase, and will update them with alternative answer spans and passages by pooling and crowdsourcing the relevance judgements over the results submitted by the challenge participants (similar to the TREC evaluation setup).

Metrics

We use the same metrics as the QReCC paper, but may add more for the final evaluation: ROUGE1-R for question rewriting, Mean Reciprocal Rank (MRR) for passage retrieval, and F1 and Exact Match for question answering.

Baselines

We provide the following baselines for comparison:

  • scai-qrecc21-simple-baseline: BM25 baseline for passage retrieval using original conversational questions without rewriting. We recommend to use this code as a boilerplate to kickstart your own submission using the VM.
  • scai-qrecc21-naacl-baseline: results for the end-to-end approach using supervised question rewriting and QA models reported in the QReCC paper (accepted at NAACL'21). This sample run is available on Zenodo as scai-qrecc21-naacl-baseline.zip.

Note that the baseline results differ from the ones reported in the paper since we made several corrections to the evaluation script and the ground truth annotations:

  • We excluded the samples for which the ground truth is missing from the evaluation (i.e., no relevant passages or no answer text or no rewrite provided by the human annotators)

  • We removed 5,251 passages judgements annotated by the heuristic as relevant for the short answers with lengths <= 5 since these matches are often trivial and unrelated, e.g., the same noun phrase appearing in different contexts.

Resources

Some useful links to get you started on a new conversational open-domain QA system:

Conversational Passage Retrieval

Answer Generation

Passage Retrieval

Conversational Question Reformulation

ScaleNet: A Shallow Architecture for Scale Estimation

ScaleNet: A Shallow Architecture for Scale Estimation Repository for the code of ScaleNet paper: "ScaleNet: A Shallow Architecture for Scale Estimatio

Axel Barroso 34 Nov 09, 2022
Mask R-CNN for object detection and instance segmentation on Keras and TensorFlow

Mask R-CNN for Object Detection and Segmentation This is an implementation of Mask R-CNN on Python 3, Keras, and TensorFlow. The model generates bound

Matterport, Inc 22.5k Jan 04, 2023
AI4Good project for detecting waste in the environment

Detect waste AI4Good project for detecting waste in environment. www.detectwaste.ml. Our latest results were published in Waste Management journal in

108 Dec 25, 2022
Official code for the CVPR 2021 paper "How Well Do Self-Supervised Models Transfer?"

How Well Do Self-Supervised Models Transfer? This repository hosts the code for the experiments in the CVPR 2021 paper How Well Do Self-Supervised Mod

Linus Ericsson 157 Dec 16, 2022
Dataset for the Research2Clinics @ NeurIPS 2021 Paper: What Do You See in this Patient? Behavioral Testing of Clinical NLP Models

Behavioral Testing of Clinical NLP Models This repository contains code for testing the behavior of clinical prediction models based on patient letter

Betty van Aken 2 Sep 20, 2022
Project dự đoán giá cổ phiếu bằng thuật toán LSTM gồm: code train và code demo

Web predicts stock prices using Long - Short Term Memory algorithm Give me some start please!!! User interface image: Choose: DayBegin, DayEnd, Stock

Vo Thuong Truong Nhon 8 Nov 11, 2022
Face uncertainty quantification or estimation using PyTorch.

Face-uncertainty-pytorch This is a demo code of face uncertainty quantification or estimation using PyTorch. The uncertainty of face recognition is af

Kaen 3 Sep 16, 2022
Pytorch implementation of our paper accepted by NeurIPS 2021 -- Revisiting Discriminator in GAN Compression: A Generator-discriminator Cooperative Compression Scheme

Revisiting Discriminator in GAN Compression: A Generator-discriminator Cooperative Compression Scheme (NeurIPS2021) (Link) Overview Prerequisites Linu

Shaojie Li 34 Mar 31, 2022
xitorch: differentiable scientific computing library

xitorch is a PyTorch-based library of differentiable functions and functionals that can be widely used in scientific computing applications as well as deep learning.

24 Apr 15, 2021
Numenta published papers code and data

Numenta research papers code and data This repository contains reproducible code for selected Numenta papers. It is currently under construction and w

Numenta 293 Jan 06, 2023
DiffStride: Learning strides in convolutional neural networks

DiffStride is a pooling layer with learnable strides. Unlike strided convolutions, average pooling or max-pooling that require cross-validating stride values at each layer, DiffStride can be initiali

Google Research 113 Dec 13, 2022
RMTD: Robust Moving Target Defence Against False Data Injection Attacks in Power Grids

RMTD: Robust Moving Target Defence Against False Data Injection Attacks in Power Grids Real-time detection performance. This repo contains the code an

0 Nov 10, 2021
HiFT: Hierarchical Feature Transformer for Aerial Tracking (ICCV2021)

HiFT: Hierarchical Feature Transformer for Aerial Tracking Ziang Cao, Changhong Fu, Junjie Ye, Bowen Li, and Yiming Li Our paper is Accepted by ICCV 2

Intelligent Vision for Robotics in Complex Environment 55 Nov 23, 2022
EXplainable Artificial Intelligence (XAI)

EXplainable Artificial Intelligence (XAI) This repository includes the codes for different projects on eXplainable Artificial Intelligence (XAI) by th

4 Nov 28, 2022
Tensorflow implementation and notebooks for Implicit Maximum Likelihood Estimation

tf-imle Tensorflow 2 and PyTorch implementation and Jupyter notebooks for Implicit Maximum Likelihood Estimation (I-MLE) proposed in the NeurIPS 2021

NEC Laboratories Europe 69 Dec 13, 2022
Reaction SMILES-AA mapping via language modelling

rxn-aa-mapper Reactions SMILES-AA sequence mapping setup conda env create -f conda.yml conda activate rxn_aa_mapper In the following we consider on ex

16 Dec 13, 2022
Official Pytorch implementation of RePOSE (ICCV2021)

RePOSE: Iterative Rendering and Refinement for 6D Object Detection (ICCV2021) [Link] Abstract We present RePOSE, a fast iterative refinement method fo

Shun Iwase 68 Nov 15, 2022
PCGNN - Procedural Content Generation with NEAT and Novelty

PCGNN - Procedural Content Generation with NEAT and Novelty Generation Approach — Metrics — Paper — Poster — Examples PCGNN - Procedural Content Gener

Michael Beukman 8 Dec 10, 2022
MegEngine implementation of YOLOX

Introduction YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and ind

旷视天元 MegEngine 77 Nov 22, 2022
OpenAi's gym environment wrapper to vectorize them with Ray

Ray Vector Environment Wrapper You would like to use Ray to vectorize your environment but you don't want to use RLLib ? You came to the right place !

Pierre TASSEL 15 Nov 10, 2022