CRISCE: Automatically Generating Critical Driving Scenarios From Car Accident Sketches

Overview

CRISCE: Automatically Generating Critical Driving Scenarios From Car Accident Sketches

This document describes how to install and use CRISCE (CRItical SCEnario), the tool developed by Jasim Ahmed and others for automatically generate simulations of car crashed from accident sketches using BeamNG.tech.

Repo Organization

.
├── Datasets
│   ├── CIREN
│   └── SYNTH
├── LICENSE
├── PythonRobotics
├── README.md
├── beamngpy-1.18-py2.py3-none-any.whl
├── crisce
└── requirements.txt

The crisce folder contains the source code of the tool. The Datasets folder contains the sample accident sketches compatible with the tool: CIREN contains sketches from NHTSA; SYNT contains synthetic sketches that we manually created from pre-existing car crash simulations in BeamNG.tech.

beamngpy-1.18-py2.py3-none-any.whl is the wheel file necessary to manually install beamngpy the Python API to BeamNG.tech. Tl;DR: The package available on pypi is broken.

requirements.txt lists the python packages needed to install the tool. They are in the usual format accepted by pip.

Dependencies

CRISCE is a tool written in Python, therefore it requires a working Python installation. Specifically, we tested CRISCE with Python 3.7.10

CRISCE uses the BeamNG.tech simulator to run the driving simulations. Therefore, BeamNG.tech must be installed as well.

Note: the version of the simulator used by CRISCE is BeamNG.research v1.7.0.1

BeamNG.tech is free for research use and can be requested to BeamNG.GmbH by submitting the form at the following link: https://register.beamng.tech/

NOTE: BeamNG.tech currently supports only Windows, hence CRISCE cannot be used on other platforms (e.g., Linux/Mac) unless you can resort to full system virtualization. For example, we tested CRISCE using the commercial tool Parallels Desktop running on a Mac Book Pro. Performance will not be the same but at least it gets the job done.

Installation

Installing BeamNG.tech

After successfully registered to https://register.beamng.tech/, you should receive an email with the instructions to access the software and a registration key (i.e., tech.key).

Please download the BeamNG.research v1.7.0.1 and unzip it somewhere in your system.

ATTENTION: BeamNG cannot handle paths with spaces and special characters, so please install it in a location that matches these requirements. We suggest something simple, like C:\BeamNG.research_v1.7.0.1.

We refer to this folder as

Store a copy of the tech.key file in a folder somewhere in your system and rename this copy to research.key. BeamNG use this folder to cache the content and the simulation data.

ATTENTION: BeamNG cannot handle paths with spaces and special characters, so please store the registration file in a location that matches these requirements. We suggest something simple, like C:\BeamNG_user.

We refer to this folder as

Installing CRISCE and its Dependencies

We exemplify the installation and usage of CRISCE using Windows Powershell; you can use other systems (e.g., PyCharm) but in that case you need to adapt the commands below.

Before starting, check that you have installed the right version of Python:

python.exe -V
    Python 3.7.10

To install CRISCE we suggest creating a virtual environment using venv. You can also use conda or similar, but in this case you need to adapt the command below to fit your case.

Move to CRISCE's root folder (i.e., where this file is) and create a new virtual environment:

python.exe -m venv .venv

Activate the virtual environment and upgrade pip, setup tools and wheel.

.venv\Scripts\activate
py.exe -m pip install --upgrade pip
pip install setuptools wheel --upgrade

Install the python dependencies listed in the requirements.txt:

pip install -r requirements.txt

At this point, we need to install beamingly from the provided wheel file:

pip install beamngpy-1.18-py2.py3-none-any.whl

Finally, we need to make sure the code of PythonRobotics is there:

git submodule init
git submodule update

At this point, you should be ready to go.

Confirm that CRISCE is installed using the following command from the root folder of this repo:

py.exe crisce/app.py --help

This command must produce an output similar to:

Usage: app.py [OPTIONS] COMMAND [ARGS]...

Options:
  --log-to PATH  Location of the log file. If not specified logs appear on the
                 console
  --debug        Activate debugging (results in more logging)  [default:
                 (Disabled)]
  --help         Show this message and exit.

Commands:
  generate

Running CRISCE

The current release of CRISCE allows to generate a BeamNG simulation of a car crash from a single sketch using the command generate. This command accepts several parameters that you can list by invoking:

py.exe crisce/app.py generate --help

Usage: app.py generate [OPTIONS]

Options:
  --accident-sketch PATH        Input accident sketch for generating the
                                simulation  [required]
  --dataset-name [CIREN|SYNTH]  Name of the dataset the accident comes from.
                                [required]
  --output-to PATH              Folder to store outputs. It will created if
                                not present. If omitted we use the accident
                                folder.
  --beamng-home PATH            Home folder of the BeamNG.research simulator
                                [required]
  --beamng-user PATH            User folder of the BeamNG.research simulator
                                [required]
  --help                        Show this message and exit.

The following commands show how you can generate a simulation of a real car crash (i.e., from a sketch in the CIREN dataset) and from a simulated crash (i.e., from a sketch in the SYNTH dataset). The difference between the two dataset is that for sketches of real car crashes, we have information about the expected impact; while, for synthetic sketches the information is missing.

For example, to create a simulation form the following sketch (i.e., CIREN-99817): CIREN-99817

CIREN-99817

you can run the following command (after replacing and with the appropriate values:

py.exe crisce/app.py generate generate --accident-sketch .\Datasets\CIREN\99817\ --dataset-name CIREN --beamng-home `
   
    ` --beamng-user 
    

    
   

To create a simulation form the following synthetic sketch (i.e., fourway_1): CIREN-99817

you can run the following command:

py.exe crisce/app.py generate generate --accident-sketch ./Datasets/SYNTH/fourway_1 --dataset-name SYNTH --beamng-home `
   
    ` --beamng-user 
    

    
   

Reporting

The generate command produces a number of intermediate outputs that show the progress of the computation and measure the accuracy of the simulation that is printed on the console:

Quality_of_environment = 33.0, quality_of_crash = 17.0, quality_of_trajecory = 19.009199327937655
Crash Simulation Accuracy =  69.00919932793765 %

The intermediate results instead are stored under the sketch folder (under output) or the folder configured via the --output-to parameter.

For the case CIREN-99817 for example, those are the intermediate results produced by CRISCE:

output/
├── car
│   ├── 0_mask_result_b.jpg
│   ├── 0_mask_result_r.jpg
│   ├── 1_blend_masks_r_b.jpg
│   ├── 1_blend_masks_res.jpg
│   ├── 2_opening_morph.jpg
│   ├── 3_AABB_OBB.jpg
│   ├── 4_crash_point_visualization.jpg
│   ├── 5_triangle_extraction.jpg
│   ├── 6_angles_for_vehicles.jpg
│   ├── 7_sequence_of_movements.jpg
│   ├── 8_twelve_point_model_sides.jpg
│   └── 9_crash_point_on_vehicles.jpg
├── kinematics
│   ├── 0_distorted_control_points.jpg
│   ├── 1_distorted_control_points.jpg
│   ├── 2_distorted_trajectory.jpg
│   ├── 2_original_trajectory.jpg
│   ├── 3_distorted_trajectory.jpg
│   └── 3_original_trajectory.jpg
├── road
│   ├── 0_gray_image.jpg
│   ├── 1_blur_image.jpg
│   ├── 2_threshold_image.jpg
│   ├── 3_dilate_image.jpg
│   ├── 4_erode_image.jpg
│   ├── 5_Contour_Viz_image.jpg
│   ├── 6_midpoints_of_lane.jpg
│   ├── 7_distortion_mapping.jpg
│   └── 8_final_result.jpg
├── simulation
│   ├── 0_sim_plot_road.jpg
│   ├── 1_sim_initial_pos_dir.jpg
│   ├── 2_sim_bbox_traj.jpg
│   ├── 3_crisce_beamng_efficiency.jpg
│   ├── 3_crisce_efficiency.jpg
│   └── 4_trace_veh_BBOX.jpg
└── summary.json
Owner
Chair of Software Engineering II, Uni Passau
Chair of Software Engineering II, Uni Passau
Reverse engineering Rosetta 2 in M1 Mac

Project Champollion About this project Rosetta 2 is an emulation mechanism to run the x86_64 applications on Arm-based Apple Silicon with Ahead-Of-Tim

FFRI Security, Inc. 258 Jan 07, 2023
Open source code for Paper "A Co-Interactive Transformer for Joint Slot Filling and Intent Detection"

A Co-Interactive Transformer for Joint Slot Filling and Intent Detection This repository contains the PyTorch implementation of the paper: A Co-Intera

67 Dec 05, 2022
A human-readable PyTorch implementation of "Self-attention Does Not Need O(n^2) Memory"

memory_efficient_attention.pytorch A human-readable PyTorch implementation of "Self-attention Does Not Need O(n^2) Memory" (Rabe&Staats'21). def effic

Ryuichiro Hataya 7 Dec 26, 2022
A very simple tool for situations where optimization with onnx-simplifier would exceed the Protocol Buffers upper file size limit of 2GB, or simply to separate onnx files to any size you want.

sne4onnx A very simple tool for situations where optimization with onnx-simplifier would exceed the Protocol Buffers upper file size limit of 2GB, or

Katsuya Hyodo 10 Aug 30, 2022
A Python library for Deep Probabilistic Modeling

Abstract DeeProb-kit is a Python library that implements deep probabilistic models such as various kinds of Sum-Product Networks, Normalizing Flows an

DeeProb-org 46 Dec 26, 2022
Plenoxels: Radiance Fields without Neural Networks

Plenoxels: Radiance Fields without Neural Networks Alex Yu*, Sara Fridovich-Keil*, Matthew Tancik, Qinhong Chen, Benjamin Recht, Angjoo Kanazawa UC Be

Sara Fridovich-Keil 81 Dec 25, 2022
Simple transformer model for CIFAR10

CIFAR-Transformer Simple transformer model for CIFAR10. Reference: https://www.tensorflow.org/text/tutorials/transformer https://github.com/huggingfac

9 Nov 07, 2022
A script depending on VASP output for calculating Fermi-Softness.

Fermi softness calculation for Vienna Ab initio Simulation Package (VASP) Update 1.1.0: Big update: Rewrote the code. Use Bader atomic division instea

qslin 11 Nov 08, 2022
Scale-aware Automatic Augmentation for Object Detection (CVPR 2021)

SA-AutoAug Scale-aware Automatic Augmentation for Object Detection Yukang Chen, Yanwei Li, Tao Kong, Lu Qi, Ruihang Chu, Lei Li, Jiaya Jia [Paper] [Bi

DV Lab 182 Dec 29, 2022
Multi-Object Tracking in Satellite Videos with Graph-Based Multi-Task Modeling

TGraM Multi-Object Tracking in Satellite Videos with Graph-Based Multi-Task Modeling, Qibin He, Xian Sun, Zhiyuan Yan, Beibei Li, Kun Fu Abstract Rece

Qibin He 6 Nov 25, 2022
Rotary Transformer

[中文|English] Rotary Transformer Rotary Transformer is an MLM pre-trained language model with rotary position embedding (RoPE). The RoPE is a relative

325 Jan 03, 2023
Code for the paper Language as a Cognitive Tool to Imagine Goals in Curiosity Driven Exploration

IMAGINE: Language as a Cognitive Tool to Imagine Goals in Curiosity Driven Exploration This repo contains the code base of the paper Language as a Cog

Flowers Team 26 Dec 22, 2022
🍷 Gracefully claim weekly free games and monthly content from Epic Store.

EPIC 免费人 🚀 优雅地领取 Epic 免费游戏 Introduction 👋 Epic AwesomeGamer 帮助玩家优雅地领取 Epic 免费游戏。 使用 「Epic免费人」可以实现如下需求: get:搬空游戏商店,获取所有常驻免费游戏与免费附加内容; claim:领取周免游戏及其免

571 Dec 28, 2022
Python-experiments - A Repository which contains python scripts to automate things and make your life easier with python

Python Experiments A Repository which contains python scripts to automate things

Vivek Kumar Singh 11 Sep 25, 2022
A3C LSTM Atari with Pytorch plus A3G design

NEWLY ADDED A3G A NEW GPU/CPU ARCHITECTURE OF A3C FOR SUBSTANTIALLY ACCELERATED TRAINING!! RL A3C Pytorch NEWLY ADDED A3G!! New implementation of A3C

David Griffis 532 Jan 02, 2023
Static-test - A playground to play with ideas related to testing the comparability of the code

Static test playground ⚠️ The code is just an experiment. Compiles and runs on U

Igor Bogoslavskyi 4 Feb 18, 2022
Contrastive unpaired image-to-image translation, faster and lighter training than cyclegan (ECCV 2020, in PyTorch)

Contrastive Unpaired Translation (CUT) video (1m) | video (10m) | website | paper We provide our PyTorch implementation of unpaired image-to-image tra

1.7k Dec 27, 2022
This repo contains research materials released by members of the Google Brain team in Tokyo.

Brain Tokyo Workshop 🧠 🗼 This repo contains research materials released by members of the Google Brain team in Tokyo. Past Projects Weight Agnostic

Google 1.2k Jan 02, 2023
State-Relabeling Adversarial Active Learning

State-Relabeling Adversarial Active Learning Code for SRAAL [2020 CVPR Oral] Requirements torch = 1.6.0 numpy = 1.19.1 tqdm = 4.31.1 AL Results The

10 Jul 14, 2022
[ICCV 2021] Learning A Single Network for Scale-Arbitrary Super-Resolution

ArbSR Pytorch implementation of "Learning A Single Network for Scale-Arbitrary Super-Resolution", ICCV 2021 [Project] [arXiv] Highlights A plug-in mod

Longguang Wang 229 Dec 30, 2022