LaneAF: Robust Multi-Lane Detection with Affinity Fields

Related tags

Deep LearningLaneAF
Overview

PWC

PWC

LaneAF: Robust Multi-Lane Detection with Affinity Fields

This repository contains Pytorch code for training and testing LaneAF lane detection models introduced in this paper.

Installation

  1. Clone this repository
  2. Install Anaconda
  3. Create a virtual environment and install all dependencies:
conda create -n laneaf pip python=3.6
source activate laneaf
pip install numpy scipy matplotlib pillow scikit-learn
pip install opencv-python
pip install https://download.pytorch.org/whl/cu101/torch-1.7.0%2Bcu101-cp36-cp36m-linux_x86_64.whl
pip install https://download.pytorch.org/whl/cu101/torchvision-0.8.1%2Bcu101-cp36-cp36m-linux_x86_64.whl
source deactivate

You can alternately find your desired torch/torchvision wheel from here.

  1. Clone and make DCNv2:
cd models/dla
git clone https://github.com/lbin/DCNv2.git
cd DCNv2
./make.sh

TuSimple

The entire TuSimple dataset should be downloaded and organized as follows:

└── TuSimple/
    ├── clips/
    |   └── .
    |   └── .
    ├── label_data_0313.json
    ├── label_data_0531.json
    ├── label_data_0601.json
    ├── test_tasks_0627.json
    ├── test_baseline.json
    └── test_label.json

The model requires ground truth segmentation labels during training. You can generate these for the entire dataset as follows:

source activate laneaf # activate virtual environment
python datasets/tusimple.py --dataset-dir=/path/to/TuSimple/
source deactivate # exit virtual environment

Training

LaneAF models can be trained on the TuSimple dataset as follows:

source activate laneaf # activate virtual environment
python train_tusimple.py --dataset-dir=/path/to/TuSimple/ --random-transforms
source deactivate # exit virtual environment

Config files, logs, results and snapshots from running the above scripts will be stored in the LaneAF/experiments/tusimple folder by default.

Inference

Trained LaneAF models can be run on the TuSimple test set as follows:

source activate laneaf # activate virtual environment
python infer_tusimple.py --dataset-dir=/path/to/TuSimple/ --snapshot=/path/to/trained/model/snapshot --save-viz
source deactivate # exit virtual environment

This will generate outputs in the TuSimple format and also produce benchmark metrics using their official implementation.

CULane

The entire CULane dataset should be downloaded and organized as follows:

└── CULane/
    ├── driver_*_*frame/
    ├── laneseg_label_w16/
    ├── laneseg_label_w16_test/
    └── list/

Training

LaneAF models can be trained on the CULane dataset as follows:

source activate laneaf # activate virtual environment
python train_culane.py --dataset-dir=/path/to/CULane/ --random-transforms
source deactivate # exit virtual environment

Config files, logs, results and snapshots from running the above scripts will be stored in the LaneAF/experiments/culane folder by default.

Inference

Trained LaneAF models can be run on the CULane test set as follows:

source activate laneaf # activate virtual environment
python infer_culane.py --dataset-dir=/path/to/CULane/ --snapshot=/path/to/trained/model/snapshot --save-viz
source deactivate # exit virtual environment

This will generate outputs in the CULane format. You can then use their official code to evaluate the model on the CULane benchmark.

Unsupervised Llamas

The Unsupervised Llamas dataset should be downloaded and organized as follows:

└── Llamas/
    ├── color_images/
    |   ├── train/
    |   ├── valid/
    |   └── test/
    └── labels/
        ├── train/
        └── valid/

Training

LaneAF models can be trained on the Llamas dataset as follows:

source activate laneaf # activate virtual environment
python train_llamas.py --dataset-dir=/path/to/Llamas/ --random-transforms
source deactivate # exit virtual environment

Config files, logs, results and snapshots from running the above scripts will be stored in the LaneAF/experiments/llamas folder by default.

Inference

Trained LaneAF models can be run on the Llamas test set as follows:

source activate laneaf # activate virtual environment
python infer_llamas.py --dataset-dir=/path/to/Llamas/ --snapshot=/path/to/trained/model/snapshot --save-viz
source deactivate # exit virtual environment

This will generate outputs in the CULane format and Llamas format for the Lane Approximations benchmark. Note that the results produced in the Llamas format could be inaccurate because we guess the IDs of the indivudal lanes.

Pre-trained Weights

You can download our pre-trained model weights using this link.

Citation

If you find our code and/or models useful in your research, please consider citing the following papers:

@article{abualsaud2021laneaf,
title={LaneAF: Robust Multi-Lane Detection with Affinity Fields},
author={Abualsaud, Hala and Liu, Sean and Lu, David and Situ, Kenny and Rangesh, Akshay and Trivedi, Mohan M},
journal={arXiv preprint arXiv:2103.12040},
year={2021}
}
Code for reproducing experiments in "Improved Training of Wasserstein GANs"

Improved Training of Wasserstein GANs Code for reproducing experiments in "Improved Training of Wasserstein GANs". Prerequisites Python, NumPy, Tensor

Ishaan Gulrajani 2.2k Jan 01, 2023
Automated Melanoma Recognition in Dermoscopy Images via Very Deep Residual Networks

Introduction This repository contains the modified caffe library and network architectures for our paper "Automated Melanoma Recognition in Dermoscopy

Lequan Yu 47 Nov 24, 2022
Reproducing Results from A Hybrid Approach to Targeting Social Assistance

title author date output Reproducing Results from A Hybrid Approach to Targeting Social Assistance Lendie Follett and Heath Henderson 12/28/2021 html_

Lendie Follett 0 Jan 06, 2022
Cancer-and-Tumor-Detection-Using-Inception-model - In this repo i am gonna show you how i did cancer/tumor detection in lungs using deep neural networks, specifically here the Inception model by google.

Cancer-and-Tumor-Detection-Using-Inception-model In this repo i am gonna show you how i did cancer/tumor detection in lungs using deep neural networks

Deepak Nandwani 1 Jan 01, 2022
This code is for eCaReNet: explainable Cancer Relapse Prediction Network.

eCaReNet This code is for eCaReNet: explainable Cancer Relapse Prediction Network. (Towards Explainable End-to-End Prostate Cancer Relapse Prediction

Institute of Medical Systems Biology 2 Jul 28, 2022
Learnable Motion Coherence for Correspondence Pruning

Learnable Motion Coherence for Correspondence Pruning Yuan Liu, Lingjie Liu, Cheng Lin, Zhen Dong, Wenping Wang Project Page Any questions or discussi

liuyuan 41 Nov 30, 2022
Code in conjunction with the publication 'Contrastive Representation Learning for Hand Shape Estimation'

HanCo Dataset & Contrastive Representation Learning for Hand Shape Estimation Code in conjunction with the publication: Contrastive Representation Lea

Computer Vision Group, Albert-Ludwigs-Universität Freiburg 38 Dec 13, 2022
Latte: Cross-framework Python Package for Evaluation of Latent-based Generative Models

Cross-framework Python Package for Evaluation of Latent-based Generative Models Latte Latte (for LATent Tensor Evaluation) is a cross-framework Python

Karn Watcharasupat 30 Sep 08, 2022
Learning Energy-Based Models by Diffusion Recovery Likelihood

Learning Energy-Based Models by Diffusion Recovery Likelihood Ruiqi Gao, Yang Song, Ben Poole, Ying Nian Wu, Diederik P. Kingma Paper: https://arxiv.o

Ruiqi Gao 41 Nov 22, 2022
PyTorch implementation of "Supervised Contrastive Learning" (and SimCLR incidentally)

PyTorch implementation of "Supervised Contrastive Learning" (and SimCLR incidentally)

Yonglong Tian 2.2k Jan 08, 2023
Structured Edge Detection Toolbox

################################################################### # # # Structure

Piotr Dollar 779 Jan 02, 2023
Long Expressive Memory (LEM)

Long Expressive Memory for Sequence Modeling This repository contains the implementation to reproduce the numerical experiments of the paper Long Expr

Konstantin Rusch 47 Dec 17, 2022
An implementation of the WHATWG URL Standard in JavaScript

whatwg-url whatwg-url is a full implementation of the WHATWG URL Standard. It can be used standalone, but it also exposes a lot of the internal algori

314 Dec 28, 2022
Fully convolutional deep neural network to remove transparent overlays from images

Fully convolutional deep neural network to remove transparent overlays from images

Marc Belmont 1.1k Jan 06, 2023
YOLOX is a high-performance anchor-free YOLO, exceeding yolov3~v5 with ONNX, TensorRT, ncnn, and OpenVINO supported.

Introduction YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and ind

7.7k Jan 03, 2023
Spatial Sparse Convolution Library

SpConv: Spatially Sparse Convolution Library PyPI Install Downloads CPU (Linux Only) pip install spconv CUDA 10.2 pip install spconv-cu102 CUDA 11.1 p

Yan Yan 1.2k Jan 07, 2023
Safe Control for Black-box Dynamical Systems via Neural Barrier Certificates

Safe Control for Black-box Dynamical Systems via Neural Barrier Certificates Installation Clone the repository: git clone https://github.com/Zengyi-Qi

Zengyi Qin 3 Oct 18, 2022
Source code release of the paper: Knowledge-Guided Deep Fractal Neural Networks for Human Pose Estimation.

GNet-pose Project Page: http://guanghan.info/projects/guided-fractal/ UPDATE 9/27/2018: Prototxts and model that achieved 93.9Pck on LSP dataset. http

Guanghan Ning 83 Nov 21, 2022
Code for paper PairRE: Knowledge Graph Embeddings via Paired Relation Vectors.

PairRE Code for paper PairRE: Knowledge Graph Embeddings via Paired Relation Vectors. This implementation of PairRE for Open Graph Benchmak datasets (

Alipay 65 Dec 19, 2022
A PyTorch implementation of SIN: Superpixel Interpolation Network

SIN: Superpixel Interpolation Network This is is a PyTorch implementation of the superpixel segmentation network introduced in our PRICAI-2021 paper:

6 Sep 28, 2022