Weaviate demo with the text2vec-openai module

Overview

Weaviate demo with the text2vec-openai module

This repository contains an example of how to use the Weaviate text2vec-openai module. When using this demo dataset, Weaviate will vectorize the data and the queries based on OpenAI's Babbage model.

What is Weaviate?

Weaviate is an open-source, modular vector search engine. It works like any other database you're used to (it has full CRUD support, it's cloud-native, etc), but it is created around the concept of storing all data objects based on the vector representations (i.e., embeddings) of these data objects. Within Weaviate you can mix traditional, scalar search filters with vector search filters through its GraphQL-API.

Weaviate modules can be used to -among other things- vectorize the data objects you add to Weaviate. In this demo, the text2vec-openai module is used to vectorize all data using OpenAI's Babbage model.

You can read about Weaviate in more detail in the software docs.

About the Dataset

This dataset contains descriptions of 34,886 movies from around the world. The dataset is taken from Kaggle.

Run the setup

Before running this setup, make sure you have an OpenAPI ready, you can create one here.

0. Update you OpenAI API key

$ export OPENAI_APIKEY=YOUR_API_KEY

1. Run the container

Run the container:

$ docker-compose up -d

2. Import the data

After the container starts up, you can import the data by running:

# Install the Weaviate Python client
$ pip3 install -r requirements.txt
# Import the data with the format `./import.py {URL} {OPENAI RATE LIMIT}`
$ ./import.py http://localhost:8080 550

Note: because the OpenAI API comes with a rate limit, we have taken this into account for this demo dataset. If you work with your own dataset and you've requested an increase/removal of your rate limit, you can increase the import speed. You can read here how to do this.

3. Query the data

You can query the data via the GraphQL interface that's available in the Weaviate Console (under "Self Hosted Weaviate").

Or you can test the example queries below.

Example Query

Learn how to use the Get{} function of the Weaviate GraphQL-API here.

{
  Get {
    Movie(
      nearText: {
        concepts: ["Movie about Venice"]
      }
      where: {
        path: ["year"]
        operator: LessThan
        valueInt: 1950
      }
      limit: 5
    ) {
      title
      plot
      year
      director {
        ... on Director {
          name
        }
      }
      genre {
        ... on Genre {
          name
        }
      }
    }
  }
}
Owner
SeMI Technologies
SeMI Technologies creates database software like the Weaviate vector search engine
SeMI Technologies
An easy to use, user-friendly and efficient code for extracting OpenAI CLIP (Global/Grid) features from image and text respectively.

Extracting OpenAI CLIP (Global/Grid) Features from Image and Text This repo aims at providing an easy to use and efficient code for extracting image &

Jianjie(JJ) Luo 13 Jan 06, 2023
A spaCy wrapper of OpenTapioca for named entity linking on Wikidata

spaCyOpenTapioca A spaCy wrapper of OpenTapioca for named entity linking on Wikidata. Table of contents Installation How to use Local OpenTapioca Vizu

Universitätsbibliothek Mannheim 80 Jan 03, 2023
A deep learning-based translation library built on Huggingface transformers

DL Translate A deep learning-based translation library built on Huggingface transformers and Facebook's mBART-Large 💻 GitHub Repository 📚 Documentat

Xing Han Lu 244 Dec 30, 2022
Code for the paper "Language Models are Unsupervised Multitask Learners"

Status: Archive (code is provided as-is, no updates expected) gpt-2 Code and models from the paper "Language Models are Unsupervised Multitask Learner

OpenAI 16.1k Jan 08, 2023
CCF BDCI BERT系统调优赛题baseline(Pytorch版本)

CCF BDCI BERT系统调优赛题baseline(Pytorch版本) 此版本基于Pytorch后端的huggingface进行实现。由于此实现使用了Oneflow的dataloader作为数据读入的方式,因此也需要安装Oneflow。其它框架的数据读取可以参考OneflowDataloade

Ziqi Zhou 9 Oct 13, 2022
Code to reprudece NeurIPS paper: Accelerated Sparse Neural Training: A Provable and Efficient Method to Find N:M Transposable Masks

Accelerated Sparse Neural Training: A Provable and Efficient Method to FindN:M Transposable Masks Recently, researchers proposed pruning deep neural n

itay hubara 4 Feb 23, 2022
Code for "Generating Disentangled Arguments with Prompts: a Simple Event Extraction Framework that Works"

GDAP The code of paper "Code for "Generating Disentangled Arguments with Prompts: a Simple Event Extraction Framework that Works"" Event Datasets Prep

45 Oct 29, 2022
DaCy: The State of the Art Danish NLP pipeline using SpaCy

DaCy: A SpaCy NLP Pipeline for Danish DaCy is a Danish preprocessing pipeline trained in SpaCy. At the time of writing it has achieved State-of-the-Ar

Kenneth Enevoldsen 71 Jan 06, 2023
Two-stage text summarization with BERT and BART

Two-Stage Text Summarization Description We experiment with a 2-stage summarization model on CNN/DailyMail dataset that combines the ability to filter

Yukai Yang (Alexis) 6 Oct 22, 2022
Sentiment Classification using WSD, Maximum Entropy & Naive Bayes Classifiers

Sentiment Classification using WSD, Maximum Entropy & Naive Bayes Classifiers

Pulkit Kathuria 173 Jan 04, 2023
天池中药说明书实体识别挑战冠军方案;中文命名实体识别;NER; BERT-CRF & BERT-SPAN & BERT-MRC;Pytorch

天池中药说明书实体识别挑战冠军方案;中文命名实体识别;NER; BERT-CRF & BERT-SPAN & BERT-MRC;Pytorch

zxx飞翔的鱼 751 Dec 30, 2022
This code is the implementation of Text Emotion Recognition (TER) with linguistic features

APSIPA-TER This code is the implementation of Text Emotion Recognition (TER) with linguistic features. The network model is BERT with a pretrained mod

kenro515 1 Feb 08, 2022
Prompt tuning toolkit for GPT-2 and GPT-Neo

mkultra mkultra is a prompt tuning toolkit for GPT-2 and GPT-Neo. Prompt tuning injects a string of 20-100 special tokens into the context in order to

61 Jan 01, 2023
A Python 3.6+ package to run .many files, where many programs written in many languages may exist in one file.

RunMany Intro | Installation | VSCode Extension | Usage | Syntax | Settings | About A tool to run many programs written in many languages from one fil

6 May 22, 2022
This repository contains the code, models and datasets discussed in our paper "Few-Shot Question Answering by Pretraining Span Selection"

Splinter This repository contains the code, models and datasets discussed in our paper "Few-Shot Question Answering by Pretraining Span Selection", to

Ori Ram 88 Dec 31, 2022
Vad-sli-asr - A Python scripts for a speech processing pipeline with Voice Activity Detection (VAD)

VAD-SLI-ASR Python scripts for a speech processing pipeline with Voice Activity

Dynamics of Language 14 Dec 09, 2022
A Word Level Transformer layer based on PyTorch and 🤗 Transformers.

Transformer Embedder A Word Level Transformer layer based on PyTorch and 🤗 Transformers. How to use Install the library from PyPI: pip install transf

Riccardo Orlando 27 Nov 20, 2022
Generating new names based on trends in data using GPT2 (Transformer network)

MLOpsNameGenerator Overall Goal The goal of the project is to develop a model that is capable of creating Pokémon names based on its description, usin

Gustav Lang Moesmand 2 Jan 10, 2022
Yet Another Neural Machine Translation Toolkit

YANMTT YANMTT is short for Yet Another Neural Machine Translation Toolkit. For a backstory how I ended up creating this toolkit scroll to the bottom o

Raj Dabre 121 Jan 05, 2023
FedNLP: A Benchmarking Framework for Federated Learning in Natural Language Processing

FedNLP is a research-oriented benchmarking framework for advancing federated learning (FL) in natural language processing (NLP). It uses FedML repository as the git submodule. In other words, FedNLP

FedML-AI 216 Nov 27, 2022