Phrase-BERT: Improved Phrase Embeddings from BERT with an Application to Corpus Exploration

Overview

Phrase-BERT: Improved Phrase Embeddings from BERT with an Application to Corpus Exploration

This is the official repository for the EMNLP 2021 long paper Phrase-BERT: Improved Phrase Embeddings from BERT with an Application to Corpus Exploration. We provide code for training and evaluating Phrase-BERT in addition to the datasets used in the paper.

Update: the model is also available now on Huggingface thanks to the help from whaleloops and nreimers!

Setup

This repository depends on sentence-BERT version 0.3.3, which you can install from the source using:

>>> git clone https://github.com/UKPLab/sentence-transformers.git --branch v0.3.3
>>> cd sentence-transformers/
>>> pip install -e .

Also you can install sentence-BERT with pip:

>>> pip install sentence-transformers==0.3.3

Quick Start

The following example shows how to use a trained Phrase-BERT model to embed phrases into dense vectors.

First download and unzip our model.

>>> cd 
   
    
>>> wget https://storage.googleapis.com/phrase-bert/phrase-bert/phrase-bert-model.zip
>>> unzip phrase-bert-model.zip -d phrase-bert-model/
>>> rm phrase-bert-model.zip

   

Then load the Phrase-BERT model through the sentence-BERT interface:

from sentence_transformers import SentenceTransformer
model_path = '
   
    '
model = SentenceTransformer(model_path)

   

You can compute phrase embeddings using Phrase-BERT as follows:

phrase_list = [ 'play an active role', 'participate actively', 'active lifestyle']
phrase_embs = model.encode( phrase_list )
[p1, p2, p3] = phrase_embs

As in sentence-BERT, the default output is a list of numpy arrays:

for phrase, embedding in zip(phrase_list, phrase_embs):
    print("Phrase:", phrase)
    print("Embedding:", embedding)
    print("")

An example of computing the dot product of phrase embeddings:

import numpy as np
print(f'The dot product between phrase 1 and 2 is: {np.dot(p1, p2)}')
print(f'The dot product between phrase 1 and 3 is: {np.dot(p1, p3)}')
print(f'The dot product between phrase 2 and 3 is: {np.dot(p2, p3)}')

An example of computing cosine similarity of phrase embeddings:

import torch 
from torch import nn
cos_sim = nn.CosineSimilarity(dim=0)
print(f'The cosine similarity between phrase 1 and 2 is: {cos_sim( torch.tensor(p1), torch.tensor(p2))}')
print(f'The cosine similarity between phrase 1 and 3 is: {cos_sim( torch.tensor(p1), torch.tensor(p3))}')
print(f'The cosine similarity between phrase 2 and 3 is: {cos_sim( torch.tensor(p2), torch.tensor(p3))}')

The output should look like:

The dot product between phrase 1 and 2 is: 218.43600463867188
The dot product between phrase 1 and 3 is: 165.48483276367188
The dot product between phrase 2 and 3 is: 160.51708984375
The cosine similarity between phrase 1 and 2 is: 0.8142536282539368
The cosine similarity between phrase 1 and 3 is: 0.6130303144454956
The cosine similarity between phrase 2 and 3 is: 0.584893524646759

Evaluation

Given the lack of a unified phrase embedding evaluation benchmark, we collect the following five phrase semantics evaluation tasks, which are described further in our paper:

Change config/model_path.py with the model path according to your directories and

  • For evaluation on Turney, run python eval_turney.py

  • For evaluation on BiRD, run python eval_bird.py

  • for evaluation on PPDB / PPDB-filtered / PAWS-short, run eval_ppdb_paws.py with:

    nohup python  -u eval_ppdb_paws.py \
        --full_run_mode \
        --task 
         
           \
        --data_dir 
          
            \
        --result_dir 
           
             \
        >./output.txt 2>&1 &
    
           
          
         

Train your own Phrase-BERT

If you would like to go beyond using the pre-trained Phrase-BERT model, you may train your own Phrase-BERT using data from the domain you are interested in. Please refer to phrase-bert/phrase_bert_finetune.py

The datasets we used to fine-tune Phrase-BERT are here: training data csv file and validation data csv file.

To re-produce the trained Phrase-BERT, please run:

export INPUT_DATA_PATH=
   
    
export TRAIN_DATA_FILE=
    
     
export VALID_DATA_FILE=
     
      
export INPUT_MODEL_PATH=bert-base-nli-stsb-mean-tokens 
export OUTPUT_MODEL_PATH=
      
       


python -u phrase_bert_finetune.py \
    --input_data_path $INPUT_DATA_PATH \
    --train_data_file $TRAIN_DATA_FILE \
    --valid_data_file $VALID_DATA_FILE \
    --input_model_path $INPUT_MODEL_PATH \
    --output_model_path $OUTPUT_MODEL_PATH

      
     
    
   

Citation:

Please cite us if you find this useful:

@inproceedings{phrasebertwang2021,
    author={Shufan Wang and Laure Thompson and Mohit Iyyer},
    Booktitle = {Empirical Methods in Natural Language Processing},
    Year = "2021",
    Title={Phrase-BERT: Improved Phrase Embeddings from BERT with an Application to Corpus Exploration}
}
Semantic search through a vectorized Wikipedia (SentenceBERT) with the Weaviate vector search engine

Semantic search through Wikipedia with the Weaviate vector search engine Weaviate is an open source vector search engine with build-in vectorization a

SeMI Technologies 191 Dec 26, 2022
A method to generate speech across multiple speakers

VoiceLoop PyTorch implementation of the method described in the paper VoiceLoop: Voice Fitting and Synthesis via a Phonological Loop. VoiceLoop is a n

Facebook Archive 873 Dec 15, 2022
Word2Wave: a framework for generating short audio samples from a text prompt using WaveGAN and COALA.

Word2Wave is a simple method for text-controlled GAN audio generation. You can either follow the setup instructions below and use the source code and CLI provided in this repo or you can have a play

Ilaria Manco 91 Dec 23, 2022
Espial is an engine for automated organization and discovery of personal knowledge

Live Demo (currently not running, on it) Espial is an engine for automated organization and discovery in knowledge bases. It can be adapted to run wit

Uzay-G 159 Dec 30, 2022
ADCS - Automatic Defect Classification System (ADCS) for SSMC

Table of Contents Table of Contents ADCS Overview Summary Operator's Guide Demo System Design System Logic Training Mode Production System Flow Folder

Tam Zher Min 2 Jun 24, 2022
Uncomplete archive of files from the European Nopsled Team

European Nopsled CTF Archive This is an archive of collected material from various Capture the Flag competitions that the European Nopsled team played

European Nopsled 4 Nov 24, 2021
Pretrain CPM - 大规模预训练语言模型的预训练代码

CPM-Pretrain 版本更新记录 为了促进中文自然语言处理研究的发展,本项目提供了大规模预训练语言模型的预训练代码。项目主要基于DeepSpeed、Megatron实现,可以支持数据并行、模型加速、流水并行的代码。 安装 1、首先安装pytorch等基础依赖,再安装APEX以支持fp16。 p

Tsinghua AI 37 Dec 06, 2022
Fake news detector filters - Smart filter project allow to classify the quality of information and web pages

fake-news-detector-1.0 Lists, lists and more lists... Spam filter list, quality keyword list, stoplist list, top-domains urls list, news agencies webs

Memo Sim 1 Jan 04, 2022
Implementation of some unbalanced loss like focal_loss, dice_loss, DSC Loss, GHM Loss et.al

Implementation of some unbalanced loss for NLP task like focal_loss, dice_loss, DSC Loss, GHM Loss et.al Summary Here is a loss implementation reposit

121 Jan 01, 2023
Course project of [email protected]

NaiveMT Prepare Clone this repository git clone [email protected]:Poeroz/NaiveMT.git

Poeroz 2 Apr 24, 2022
An Explainable Leaderboard for NLP

ExplainaBoard: An Explainable Leaderboard for NLP Introduction | Website | Download | Backend | Paper | Video | Bib Introduction ExplainaBoard is an i

NeuLab 319 Dec 20, 2022
Modular and extensible speech recognition library leveraging pytorch-lightning and hydra.

Lightning ASR Modular and extensible speech recognition library leveraging pytorch-lightning and hydra What is Lightning ASR • Installation • Get Star

Soohwan Kim 40 Sep 19, 2022
simpleT5 is built on top of PyTorch-lightning⚡️ and Transformers🤗 that lets you quickly train your T5 models.

Quickly train T5 models in just 3 lines of code + ONNX support simpleT5 is built on top of PyTorch-lightning ⚡️ and Transformers 🤗 that lets you quic

Shivanand Roy 220 Dec 30, 2022
Repository to hold code for the cap-bot varient that is being presented at the SIIC Defence Hackathon 2021.

capbot-siic Repository to hold code for the cap-bot varient that is being presented at the SIIC Defence Hackathon 2021. Problem Inspiration A plethora

Aryan Kargwal 19 Feb 17, 2022
Global Rhythm Style Transfer Without Text Transcriptions

Global Prosody Style Transfer Without Text Transcriptions This repository provides a PyTorch implementation of AutoPST, which enables unsupervised glo

Kaizhi Qian 193 Dec 30, 2022
天池中药说明书实体识别挑战冠军方案;中文命名实体识别;NER; BERT-CRF & BERT-SPAN & BERT-MRC;Pytorch

天池中药说明书实体识别挑战冠军方案;中文命名实体识别;NER; BERT-CRF & BERT-SPAN & BERT-MRC;Pytorch

zxx飞翔的鱼 751 Dec 30, 2022
Application for shadowing Chinese.

chinese-shadowing Simple APP for shadowing chinese. With this application, it is very easy to record yourself, play the sound recorded and listen to s

Thomas Hirtz 5 Sep 06, 2022
PyTorch implementation of Microsoft's text-to-speech system FastSpeech 2: Fast and High-Quality End-to-End Text to Speech.

An implementation of Microsoft's "FastSpeech 2: Fast and High-Quality End-to-End Text to Speech"

Chung-Ming Chien 1k Dec 30, 2022
ACL'2021: Learning Dense Representations of Phrases at Scale

DensePhrases DensePhrases is an extractive phrase search tool based on your natural language inputs. From 5 million Wikipedia articles, it can search

Princeton Natural Language Processing 540 Dec 30, 2022
PyTorch impelementations of BERT-based Spelling Error Correction Models.

PyTorch impelementations of BERT-based Spelling Error Correction Models

Heng Cai 209 Dec 30, 2022