PyTorch code for the "Deep Neural Networks with Box Convolutions" paper

Overview

Box Convolution Layer for ConvNets


Single-box-conv network (from `examples/mnist.py`) learns patterns on MNIST

What This Is

This is a PyTorch implementation of the box convolution layer as introduced in the 2018 NeurIPS paper:

Burkov, E., & Lempitsky, V. (2018) Deep Neural Networks with Box Convolutions. Advances in Neural Information Processing Systems 31, 6214-6224.

How to Use

Installing

python3 -m pip install git+https://github.com/shrubb/box-convolutions.git
python3 -m box_convolution.test # if throws errors, please open a GitHub issue

To uninstall:

python3 -m pip uninstall box_convolution

Tested on Ubuntu 18.04.2, Python 3.6, PyTorch 1.0.0, GCC {4.9, 5.5, 6.5, 7.3}, CUDA 9.2. Other versions (e.g. macOS or Python 2.7 or CUDA 8 or CUDA 10) should work too, but I haven't checked. If something doesn't build, please open a Github issue.

Known issues (see this chat):

  • CUDA 9/9.1 + GCC 6 isn't supported due to a bug in NVCC.

You can specify a different compiler with CC environment variable:

CC=g++-7 python3 -m pip install git+https://github.com/shrubb/box-convolutions.git

Using

import torch
from box_convolution import BoxConv2d

box_conv = BoxConv2d(16, 8, 240, 320)
help(BoxConv2d)

Also, there are usage examples in examples/.

Quick Tour of Box convolutions

You may want to see our poster.

Why reinvent the old convolution?

3×3 convolutions are too small ⮕ receptive field grows too slow ⮕ ConvNets have to be very deep.

This is especially undesirable in dense prediction tasks (segmentation, depth estimation, object detection, ...).

Today people solve this by

  • dilated/deformable convolutions (can bring artifacts or degrade to 1×1 conv; almost always filter high-frequency);
  • "global" spatial pooling layers (usually too constrained, fixed size, not "fully convolutional").

How does it work?

Box convolution layer is a basic depthwise convolution (i.e. Conv2d with groups=in_channels) but with special kernels called box kernels.

A box kernel is a rectangular averaging filter. That is, filter values are fixed and unit! Instead, we learn four parameters per rectangle − its size and offset:

image

image

Any success stories?

One example: there is an efficient semantic segmentation model ENet. It's a classical hourglass architecture stacked of dozens ResNet-like blocks (left image).

Let's replace some of these blocks by our "box convolution block" (right image).

First we replaced every second block with a box convolution block (BoxENet in the paper). The model became

  • more accurate,
  • faster,
  • lighter
  • without dilated convolutions.

Then, we replaced every residual block (except the down- and up-sampling ones)! The result, BoxOnlyENet, is

  • a ConvNet almost without (traditional learnable weight) convolutions,
  • 2 times less operations,
  • 3 times less parameters,
  • still more accurate than ENet!
Comments
  • Build problem!

    Build problem!

    Hi! Can't compile pls see log https://drive.google.com/open?id=1U_0axWSgQGsvvdMWv5FclS1hHHihqx9M

    Command "/home/alex/anaconda3/bin/python -u -c "import setuptools, tokenize;file='/tmp/pip-req-build-n1eyvbz3/setup.py';f=getattr(tokenize, 'open', open)(file);code=f.read().replace('\r\n', '\n');f.close();exec(compile(code, file, 'exec'))" install --record /tmp/pip-record-p0dv1roq/install-record.txt --single-version-externally-managed --compile --user --prefix=" failed with error code 1 in /tmp/pip-req-build-n1eyvbz3/

    opened by aidonchuk 63
  • Implementation in VGG

    Implementation in VGG

    Hey,

    I am trying to implement box convolution for HED (Holistically-Nested Edge Detection) which uses VGG architecture. Here's the architecture with box convolution layer:

    class HED(nn.Module):
        def __init__(self):
            super(HED, self).__init__()
    
            # conv1
            self.conv1 = nn.Sequential(
                nn.Conv2d(3, 64, 3, padding=1),
                BoxConv2d(1, 64, 5, 5),
                nn.ReLU(inplace=True),
                nn.Conv2d(64, 64, 3, padding=1),
                #BoxConv2d(1, 64, 28, 28),
                nn.ReLU(inplace=True),
            )
    
            # conv2
            self.conv2 = nn.Sequential(
                nn.MaxPool2d(2, stride=2, ceil_mode=True),  # 1/2
                nn.Conv2d(64, 128, 3, padding=1),
                nn.ReLU(inplace=True),
                nn.Conv2d(128, 128, 3, padding=1),
                nn.ReLU(inplace=True),
            )
    
            # conv3
            self.conv3 = nn.Sequential(
                nn.MaxPool2d(2, stride=2, ceil_mode=True),  # 1/4
                nn.Conv2d(128, 256, 3, padding=1),
                nn.ReLU(inplace=True),
                nn.Conv2d(256, 256, 3, padding=1),
                nn.ReLU(inplace=True),
                nn.Conv2d(256, 256, 3, padding=1),
                nn.ReLU(inplace=True),
            )
    
            # conv4
            self.conv4 = nn.Sequential(
                nn.MaxPool2d(2, stride=2, ceil_mode=True),  # 1/8
                nn.Conv2d(256, 512, 3, padding=1),
                nn.ReLU(inplace=True),
                nn.Conv2d(512, 512, 3, padding=1),
                nn.ReLU(inplace=True),
                nn.Conv2d(512, 512, 3, padding=1),
                nn.ReLU(inplace=True),
            )
    
            # conv5
            self.conv5 = nn.Sequential(
                nn.MaxPool2d(2, stride=2, ceil_mode=True),  # 1/16
                nn.Conv2d(512, 512, 3, padding=1),
                nn.ReLU(inplace=True),
                nn.Conv2d(512, 512, 3, padding=1),
                nn.ReLU(inplace=True),
                nn.Conv2d(512, 512, 3, padding=1),
                nn.ReLU(inplace=True),
            )
    
            self.dsn1 = nn.Conv2d(64, 1, 1)
            self.dsn2 = nn.Conv2d(128, 1, 1)
            self.dsn3 = nn.Conv2d(256, 1, 1)
            self.dsn4 = nn.Conv2d(512, 1, 1)
            self.dsn5 = nn.Conv2d(512, 1, 1)
            self.fuse = nn.Conv2d(5, 1, 1)
    
        def forward(self, x):
            h = x.size(2)
            w = x.size(3)
    
            conv1 = self.conv1(x)
            conv2 = self.conv2(conv1)
            conv3 = self.conv3(conv2)
            conv4 = self.conv4(conv3)
            conv5 = self.conv5(conv4)
    
            ## side output
            d1 = self.dsn1(conv1)
            d2 = F.upsample_bilinear(self.dsn2(conv2), size=(h,w))
            d3 = F.upsample_bilinear(self.dsn3(conv3), size=(h,w))
            d4 = F.upsample_bilinear(self.dsn4(conv4), size=(h,w))
            d5 = F.upsample_bilinear(self.dsn5(conv5), size=(h,w))
    
            # dsn fusion output
            fuse = self.fuse(torch.cat((d1, d2, d3, d4, d5), 1))
    
            d1 = F.sigmoid(d1)
            d2 = F.sigmoid(d2)
            d3 = F.sigmoid(d3)
            d4 = F.sigmoid(d4)
            d5 = F.sigmoid(d5)
            fuse = F.sigmoid(fuse)
    
            return d1, d2, d3, d4, d5, fuse
    

    I get the following error: RuntimeError: BoxConv2d: all parameters must have as many rows as there are input channels (box_convolution_forward at src/box_convolution_interface.cpp:30)

    Can you help me with this?

    opened by Flock1 10
  • YOLO architecture

    YOLO architecture

    Hi,

    I want to know if there's some way I can create an architecture that'll work with YOLO. I've read a lot of implementations with pytorch but I don't know how should I modify the cfg file so that I can add box convolution layer.

    Let me know.

    opened by Flock1 9
  • Build Problem Windows 10 CUDA10.1 Python Bindings?

    Build Problem Windows 10 CUDA10.1 Python Bindings?

    Hi, I'm trying to compile the box-convolutions using Windows 10 with CUDA 10.1. This results in the following error:

    \python\python36\lib\site-packages\torch\lib\include\pybind11\cast.h(1439): error: expression must be a pointer to a complete object type
    
      1 error detected in the compilation of "C:/Users/CHRIST~1/AppData/Local/Temp/tmpxft_000010ec_00000000-8_integral_image_cuda.cpp4.ii".
      integral_image_cuda.cu
      error: command 'C:\\Program Files\\NVIDIA GPU Computing Toolkit\\CUDA\\v10.1\\bin\\nvcc.exe' failed with exit status 2
    
      ----------------------------------------
    Failed building wheel for box-convolution
    Running setup.py clean for box-convolution
    Failed to build box-convolution
    

    Any ideas? Thanks in advance

    opened by tom23141 6
  • Getting a cuda runtime error (9) : invalid configuration argument at src/box_convolution_cuda_forward.ci:250

    Getting a cuda runtime error (9) : invalid configuration argument at src/box_convolution_cuda_forward.ci:250

    Hello,

    I've been trying to implement your box convolution layer on a ResNet model by just substituting your BottleneckBoxConv layers for a typical ResNet Bottleneck layer.

    I was getting this error

    THCudaCheck FAIL file=src/box_convolution_cuda_forward.cu line=250 error=9 : invalid configuration argument
    Traceback (most recent call last):
      File "half_box_train.py", line 178, in <module>
        main()
      File "half_box_train.py", line 107, in main
        scores = res_net(x)
      File "/opt/anaconda3/lib/python3.7/site-packages/torch/nn/modules/module.py", line 493, in __call__
        result = self.forward(*input, **kwargs)
      File "/home/dkang/Project/cs231n_project_box_convolution/models/HalfBoxResNet.py", line 331, in forward
         x = self.layer3(x)
      File "/opt/anaconda3/lib/python3.7/site-packages/torch/nn/modules/module.py", line 493, in __call__
        result = self.forward(*input, **kwargs)
      File "/opt/anaconda3/lib/python3.7/site-packages/torch/nn/modules/container.py", line 92, in forward
           input = module(input)
      File "/opt/anaconda3/lib/python3.7/site-packages/torch/nn/modules/module.py", line 493, in __call__
        result = self.forward(*input, **kwargs)
      File "/home/dkang/Project/cs231n_project_box_convolution/models/HalfBoxResNet.py", line 66, in forward
        return F.relu(x + self.main_branch(x), inplace=True)
      File "/opt/anaconda3/lib/python3.7/site-packages/torch/nn/modules/module.py", line 493, in __call__
        result = self.forward(*input, **kwargs)
      File "/opt/anaconda3/lib/python3.7/site-packages/torch/nn/modules/container.py", line 92, in forward
    input = module(input)
      File "/opt/anaconda3/lib/python3.7/site-packages/torch/nn/modules/module.py", line 493, in __call__
        result = self.forward(*input, **kwargs)
      File "/opt/anaconda3/lib/python3.7/site-packages/box_convolution/box_convolution_module.py", line 222, in forward
        self.reparametrization_h, self.reparametrization_w, self.normalize, self.exact)
      File "/opt/anaconda3/lib/python3.7/site-packages/box_convolution/box_convolution_function.py", line 46, in forward
        input_integrated, x_min, x_max, y_min, y_max, normalize, exact)
    RuntimeError: cuda runtime error (9) : invalid configuration argument at src/box_convolution_cuda_forward.cu:250
    

    Thanks so much!

    opened by dkang9503 5
  • Speed and Efficiency of Depthwise separable operation?

    Speed and Efficiency of Depthwise separable operation?

    As far as modern libraries are concerned, there is not much support for depth-wise separable operations, i.e. we cannot write custom operations that can be done depthwise. Only convolutions are supported.

    How did you apply M box convolutions to each of the N input filters, to generate NM output filters? How is the different than using a for loop over the N input filters, applying M box convs on each one, and concatenating all the results?

    opened by kennyseb 5
  • Import Error

    Import Error

    Success build with ubuntu 16.04, cuda 10 and gcc 7.4. But import error encountered:

    In [1]: import torch
    
    In [2]: from box_convolution import BoxConv2d
    
    

    ImportError                               Traceback (most recent call last)
    <ipython-input-2-2424917dbf01> in <module>()
    ----> 1 from box_convolution import BoxConv2d
    
    ~/Software/pkgs/box-convolutions/box_convolution/__init__.py in <module>()
    ----> 1 from .box_convolution_module import BoxConv2d
    
    ~/Software/pkgs/box-convolutions/box_convolution/box_convolution_module.py in <module>()
          2 import random
          3 
    ----> 4 from .box_convolution_function import BoxConvolutionFunction, reparametrize
          5 import box_convolution_cpp_cuda as cpp_cuda
          6 
    
    ~/Software/pkgs/box-convolutions/box_convolution/box_convolution_function.py in <module>()
          1 import torch
          2 
    ----> 3 import box_convolution_cpp_cuda as cpp_cuda
          4 
          5 def reparametrize(
    
    ImportError: /usr/Software/anaconda3/lib/python3.6/site-packages/box_convolution_cpp_cuda.cpython-36m-x86_64-linux-gnu.so: undefined symbol: __cudaPopCallConfiguration
    

    @shrubb

    opened by the-butterfly 5
  • Error during forward pass

    Error during forward pass

         44         input_integrated = cpp_cuda.integral_image(input)
         45         output = cpp_cuda.box_convolution_forward(
    ---> 46             input_integrated, x_min, x_max, y_min, y_max, normalize, exact)
         47 
         48         ctx.save_for_backward(
    
    RuntimeError: cuda runtime error (9) : invalid configuration argument at src/box_convolution_cuda_forward.cu:249```
    opened by belskikh 5
  • Test script failed

    Test script failed

    Test script assertion failed:

    Random seed is 1546545757 Testing for device 'cpu' Running test_integral_image()... 100%|| 50/50 [00:00<00:00, 1491.15it/s] OK Running test_box_convolution_module()... 0%| python3: /pytorch/third_party/ideep/mkl-dnn/src/cpu/jit_avx2_conv_kernel_f32.cpp:567: static mkldnn::impl::status_t mkldnn::impl::cpu::jit_avx2_conv_fwd_kernel_f32::init_conf(mkldnn::impl::cpu::jit_conv_conf_t&, const convolution_desc_t&, const mkldnn::impl::memory_desc_wrapper&, const mkldnn::impl::memory_desc_wrapper&, const mkldnn::impl::memory_desc_wrapper&, const primitive_attr_t&): Assertion `jcp.ur_w * (jcp.nb_oc_blocking + 1) <= num_avail_regs' failed. Aborted (core dumped)

    Configuration: Ubuntu 16.04 LTS, CUDA 9.2, PyTorch 1.1.0, GCC 5.4.0.

    opened by vtereshkov 4
  • how box convolution works

    how box convolution works

    Hi,

    It is a nice work. In the first figure on your poster, you compared the 3x3 convolution layer and your box convolution layer. I am not clear how the box convolution works. Is it right that for each position (p,q) on the image, you use a box filter which has a relative position x, y to (p,q) and size w,h to calculate the value for (p,q) on the output? You learn the 4 parameters x, y, w, h for each box filter. For example, in the figure, the value for the red anchor pixel position on the output should be the sum of the values in the box. Is it correct? Thanks.

    opened by jiaozizhao 4
  • Multi-GPU Training: distributed error encountered

    Multi-GPU Training: distributed error encountered

    I am using https://github.com/facebookresearch/maskrcnn-benchmark for object detection, I want to use box convolutions, when I add a box convolution after some layer, training with 1 GPU is OK, while training with multiple GPUs in distributed mode failed, the error is very similar to this issue, I do not know how to fix, have some ideas? @shrubb

    2019-02-18 16:09:15,187 maskrcnn_benchmark.trainer INFO: Start training
    Traceback (most recent call last):
      File "tools/train_net.py", line 172, in <module>
        main()
      File "tools/train_net.py", line 165, in main
        model = train(cfg, args.local_rank, args.distributed)
      File "tools/train_net.py", line 74, in train
        arguments,
      File "/srv/data0/hzxubinbin/projects/maskrcnn_benchmark/maskrcnn-benchmark/maskrcnn_benchmark/engine/trainer.py", line 79, in do_train
        losses.backward()
      File "/home/hzxubinbin/anaconda3.1812/lib/python3.7/site-packages/torch/tensor.py", line 102, in backward
        torch.autograd.backward(self, gradient, retain_graph, create_graph)
      File "/home/hzxubinbin/anaconda3.1812/lib/python3.7/site-packages/torch/autograd/__init__.py", line 90, in backward
        allow_unreachable=True)  # allow_unreachable flag
      File "/home/hzxubinbin/anaconda3.1812/lib/python3.7/site-packages/torch/nn/parallel/distributed.py", line 445, in distributed_data_parallel_hook
        self._queue_reduction(bucket_idx)
      File "/home/hzxubinbin/anaconda3.1812/lib/python3.7/site-packages/torch/nn/parallel/distributed.py", line 475, in _queue_reduction
        self.device_ids)
    TypeError: _queue_reduction(): incompatible function arguments. The following argument types are supported:
        1. (process_group: torch.distributed.ProcessGroup, grads_batch: List[List[at::Tensor]], devices: List[int]) -> Tuple[torch.distributed.Work, at::Tensor]
    
    Invoked with: <torch.distributed.ProcessGroupNCCL object at 0x7f0d95248148>, [[tensor([[[[0.]],
    

    1 GPU is too slow, I want to use multiple GPUs

    opened by freesouls 4
  • How can I run Cityscapes example on a test set?

    How can I run Cityscapes example on a test set?

    Hello, collegues! I've trained BoxERFNet, and now I wanna run this model on a test set to evaluate it. I checked the source code(train.py) and established 'test' in place of 'test' in 80th string. But there was falure, the evaluated metrics were incorrect(e.g. 0.0 and 0.0). Can you explain me, what I need to do to evaluate model on a test set? I guess that problem is on 'validate' function(241th string), because confusion_matrix_update(268th string) tensors are really different in test and val sets.

    opened by mikhailkonyk 3
Releases(v1.0.0)
Owner
Egor Burkov
Egor Burkov
Convert ONNX model graph to Keras model format.

Convert ONNX model graph to Keras model format.

Grigory Malivenko 175 Dec 28, 2022
PyToch implementation of A Novel Self-supervised Learning Task Designed for Anomaly Segmentation

Self-Supervised Anomaly Segmentation Intorduction This is a PyToch implementation of A Novel Self-supervised Learning Task Designed for Anomaly Segmen

WuFan 2 Jan 27, 2022
Structure Information is the Key: Self-Attention RoI Feature Extractor in 3D Object Detection

Structure Information is the Key: Self-Attention RoI Feature Extractor in 3D Object Detection abstract:Unlike 2D object detection where all RoI featur

DK. Zhang 2 Oct 07, 2022
Apache Spark - A unified analytics engine for large-scale data processing

Apache Spark Spark is a unified analytics engine for large-scale data processing. It provides high-level APIs in Scala, Java, Python, and R, and an op

The Apache Software Foundation 34.7k Jan 04, 2023
CRISCE: Automatically Generating Critical Driving Scenarios From Car Accident Sketches

CRISCE: Automatically Generating Critical Driving Scenarios From Car Accident Sketches This document describes how to install and use CRISCE (CRItical

Chair of Software Engineering II, Uni Passau 2 Feb 09, 2022
Unsupervised Learning of Probably Symmetric Deformable 3D Objects from Images in the Wild

Unsupervised Learning of Probably Symmetric Deformable 3D Objects from Images in the Wild

1.1k Jan 03, 2023
Multi-task Multi-agent Soft Actor Critic for SMAC

Multi-task Multi-agent Soft Actor Critic for SMAC Overview The CARE formulti-task: Multi-Task Reinforcement Learning with Context-based Representation

RuanJingqing 8 Sep 30, 2022
Multi-Scale Aligned Distillation for Low-Resolution Detection (CVPR2021)

MSAD Multi-Scale Aligned Distillation for Low-Resolution Detection Lu Qi*, Jason Kuen*, Jiuxiang Gu, Zhe Lin, Yi Wang, Yukang Chen, Yanwei Li, Jiaya J

Jia Research Lab 115 Dec 23, 2022
Python package provinding tools for artistic interactive applications using AI

Documentation redrawing Python package provinding tools for artistic interactive applications using AI Created by ReDrawing Campinas team for the Open

ReDrawing Campinas 1 Sep 30, 2021
Gym-TORCS is the reinforcement learning (RL) environment in TORCS domain with OpenAI-gym-like interface.

Gym-TORCS Gym-TORCS is the reinforcement learning (RL) environment in TORCS domain with OpenAI-gym-like interface. TORCS is the open-rource realistic

naoto yoshida 400 Dec 27, 2022
Implementation of C-RNN-GAN.

Implementation of C-RNN-GAN. Publication: Title: C-RNN-GAN: Continuous recurrent neural networks with adversarial training Information: http://mogren.

Olof Mogren 427 Dec 25, 2022
3D Human Pose Machines with Self-supervised Learning

3D Human Pose Machines with Self-supervised Learning Keze Wang, Liang Lin, Chenhan Jiang, Chen Qian, and Pengxu Wei, “3D Human Pose Machines with Self

Chenhan Jiang 398 Dec 20, 2022
Two-stage CenterNet

Probabilistic two-stage detection Two-stage object detectors that use class-agnostic one-stage detectors as the proposal network. Probabilistic two-st

Xingyi Zhou 1.1k Jan 03, 2023
Nest - A flexible tool for building and sharing deep learning modules

Nest - A flexible tool for building and sharing deep learning modules Nest is a flexible deep learning module manager, which aims at encouraging code

ZhouYanzhao 41 Oct 10, 2022
Interactive Visualization to empower domain experts to align ML model behaviors with their knowledge.

An interactive visualization system designed to helps domain experts responsibly edit Generalized Additive Models (GAMs). For more information, check

InterpretML 83 Jan 04, 2023
Athena is the only tool that you will ever need to optimize your portfolio.

Athena Portfolio optimization is the process of selecting the best portfolio (asset distribution), out of the set of all portfolios being considered,

Indrajit 1 Mar 25, 2022
一个免费开源一键搭建的通用验证码识别平台,大部分常见的中英数验证码识别都没啥问题。

captcha_server 一个免费开源一键搭建的通用验证码识别平台,大部分常见的中英数验证码识别都没啥问题。 使用方法 python = 3.8 以上环境 pip install -r requirements.txt -i https://pypi.douban.com/simple gun

Sml2h3 189 Dec 02, 2022
A fast, distributed, high performance gradient boosting (GBT, GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks.

Light Gradient Boosting Machine LightGBM is a gradient boosting framework that uses tree based learning algorithms. It is designed to be distributed a

Microsoft 14.5k Jan 08, 2023
A Pytorch implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE

SMU_pytorch A Pytorch Implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE arXiv https://arxiv.org/ab

Fuhang 36 Dec 24, 2022
A set of tools for converting a darknet dataset to COCO format working with YOLOX

darknet格式数据→COCO darknet训练数据目录结构(详情参见dataset/darknet): darknet ├── class.names ├── gen_config.data ├── gen_train.txt ├── gen_valid.txt └── images

RapidAI-NG 148 Jan 03, 2023