OCR Post Correction for Endangered Language Texts

Overview

๐Ÿ“Œ Coming soon: an update to the software including features from our paper on semi-supervised OCR post-correction, to be published in the Transactions of the Association for Computational Linguistics (TACL)!

Check out the paper here.

OCR Post Correction for Endangered Language Texts

This repository contains code for models and experiments from the paper "OCR Post Correction for Endangered Language Texts".

Textual data in endangered languages is often found in formats that are not machine-readable, including scanned images of paper books. Extracting the text is challenging because there is typically no annotated data to train an OCR system for each endangered language. Instead, we focus on post-correcting the OCR output from a general-purpose OCR system.

๐Ÿ“Œ In the paper, we present a dataset containing annotations for documents in three critically endangered languages: Ainu, Griko, Yakkha.

๐Ÿ“Œ Our model reduces the recognition error rate by 34% on average, over a state-of-the-art OCR system.

Learn more about the paper here!

OCR Post-Correction

The goal of OCR post-correction is to automatically correct errors in the text output from an existing OCR system.

The existing OCR system is used to obtain a first pass transcription of the input image (example below in the endangered language Griko):

First pass OCR transcription

The incorrectly recognized characters in the first pass are then corrected by the post-correction model.

Corrected transcription

Model

As seen in the example above, OCR post-correction is a text-based sequence-to-sequence task.

๐Ÿ“Œ We use a character-level encoder-decoder architecture with attention and add several adaptations for the low-resource setting. The paper has all the details!

๐Ÿ“Œ The model is trained in a supervised manner. The training data consists of first pass OCR outputs as the source with corresponding manually corrected transcriptions as the target.

๐Ÿ“Œ Some books that contain texts in endangered languages also contain translations of the text in another (usually high-resource) language. We incorporate an additional encoder in the model, with a multisource framework, to use the information from these translations if they are available.

We provide instructions for both single-source and multisource models:

  • The single-source model can be used for almost any document and is significantly easier to set up.

  • The multisource model can only be used if translations are available.

Dataset

This repository contains a sample from our dataset in sample_dataset, which you can use to train the post-correction model. Get the full dataset here!

However, this repository can be used to train OCR post-correction models for documents in any language!

๐Ÿš€ If you want to use our model with a new set of documents, construct a dataset by following the steps here.

๐Ÿš€ We'd love to hear about the new datasets and models you build: send us an email at [email protected]!

Running Experiments

Once you have a suitable dataset (e.g., sample_dataset or your own dataset), you can train a model and run experiments on OCR post-correction.

If you have your own dataset, you can use the utils/prepare_data.py script to create train, development, and test splits (see the last step here).

The steps are described below, illustrated with sample_dataset/postcorrection. If using another dataset, simply change the experiment settings to point to your dataset and run the same scripts.

Requirements

Python 3+ is required. Pip can be used to install the packages:

pip install -r postcorr_requirements.txt

Training

The process of training the post-correction model has two main steps:

  • Pretraining with first pass OCR outputs.
  • Training with manually corrected transcriptions in a supervised manner.

For a single-source model, modify the experimental settings in train_single-source.sh to point to the appropriate dataset and desired output folder. It is currently set up to use sample_dataset.

Then run

bash train_single-source.sh

For multisource, use train_multi-source.sh.

Log files and saved models are written to the user-specified experiment folder for both the pretraining and training steps. For a list of all available hyperparameters and options, look at postcorrection/constants.py and postcorrection/opts.py.

Testing

For testing with a single-source model, modify the experimental settings in test_single-source.sh. It is currently set up to use sample_dataset.

Then run

bash test_single-source.sh

For multisource, use test_multi-source.sh.

Citation

Please cite our paper if this repository was useful.

@inproceedings{rijhwani-etal-2020-ocr,
    title = "{OCR} {P}ost {C}orrection for {E}ndangered {L}anguage {T}exts",
    author = "Rijhwani, Shruti  and
      Anastasopoulos, Antonios  and
      Neubig, Graham",
    booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
    month = nov,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/2020.emnlp-main.478",
    doi = "10.18653/v1/2020.emnlp-main.478",
    pages = "5931--5942",
}

License

Owner
Shruti Rijhwani
Ph.D. student at CMU, working on natural language processing.
Shruti Rijhwani
Diverse Image Generation via Self-Conditioned GANs

Diverse Image Generation via Self-Conditioned GANs Project | Paper Diverse Image Generation via Self-Conditioned GANs Steven Liu, Tongzhou Wang, David

Steven Liu 147 Dec 03, 2022
JAX code for the paper "Control-Oriented Model-Based Reinforcement Learning with Implicit Differentiation"

Optimal Model Design for Reinforcement Learning This repository contains JAX code for the paper Control-Oriented Model-Based Reinforcement Learning wi

Evgenii Nikishin 43 Sep 28, 2022
Adversarial Graph Representation Adaptation for Cross-Domain Facial Expression Recognition (AGRA, ACM 2020, Oral)

Cross Domain Facial Expression Recognition Benchmark Implementation of papers: Cross-Domain Facial Expression Recognition: A Unified Evaluation Benchm

89 Dec 09, 2022
Simple ONNX operation generator. Simple Operation Generator for ONNX.

sog4onnx Simple ONNX operation generator. Simple Operation Generator for ONNX. https://github.com/PINTO0309/simple-onnx-processing-tools Key concept V

Katsuya Hyodo 6 May 15, 2022
[ICCV2021] Official Pytorch implementation for SDGZSL (Semantics Disentangling for Generalized Zero-Shot Learning)

Semantics Disentangling for Generalized Zero-shot Learning This is the official implementation for paper Zhi Chen, Yadan Luo, Ruihong Qiu, Zi Huang, J

25 Dec 06, 2022
Datasets, Transforms and Models specific to Computer Vision

vision Datasets, Transforms and Models specific to Computer Vision Installation First install the nightly version of OneFlow python3 -m pip install on

OneFlow 68 Dec 07, 2022
This is the winning solution of the Endocv-2021 grand challange.

Endocv2021-winner [Paper] This is the winning solution of the Endocv-2021 grand challange. Dependencies pytorch # tested with 1.7 and 1.8 torchvision

Vajira Thambawita 14 Dec 03, 2022
MPI Interest Group on Algorithms on 1st semester 2021

MPI Algorithms Interest Group Introduction Lecturer: Steve Yan Location: TBA Time Schedule: TBA Semester: 1 Useful URLs Typora: https://typora.io Goog

Ex10si0n 13 Sep 08, 2022
Tackling the Class Imbalance Problem of Deep Learning Based Head and Neck Organ Segmentation

Info This is the code repository of the work Tackling the Class Imbalance Problem of Deep Learning Based Head and Neck Organ Segmentation from Elias T

2 Apr 20, 2022
public repo for ESTER dataset and modeling (EMNLP'21)

Project / Paper Introduction This is the project repo for our EMNLP'21 paper: https://arxiv.org/abs/2104.08350 Here, we provide brief descriptions of

PlusLab 19 Oct 27, 2022
Art Project "Schrรถdinger's Game of Life"

Repo of the project "Team Creative Quantum AI: Schrรถdinger's Game of Life" Installation new conda env: conda create --name qcml python=3.8 conda activ

โ„โ—ฎโ„•โ„•โ—ญโ„ โ„โˆˆแ›”โˆˆโ„ 2 Sep 15, 2022
WarpDrive: Extremely Fast End-to-End Deep Multi-Agent Reinforcement Learning on a GPU

WarpDrive is a flexible, lightweight, and easy-to-use open-source reinforcement learning (RL) framework that implements end-to-end multi-agent RL on a single GPU (Graphics Processing Unit).

Salesforce 334 Jan 06, 2023
InsCLR: Improving Instance Retrieval with Self-Supervision

InsCLR: Improving Instance Retrieval with Self-Supervision This is an official PyTorch implementation of the InsCLR paper. Download Dataset Dataset Im

Zelu Deng 25 Aug 30, 2022
HDMapNet: A Local Semantic Map Learning and Evaluation Framework

HDMapNet_devkit Devkit for HDMapNet. HDMapNet: A Local Semantic Map Learning and Evaluation Framework Qi Li, Yue Wang, Yilun Wang, Hang Zhao [Paper] [

Tsinghua MARS Lab 421 Jan 04, 2023
Generative code template for PixelBeasts 10k NFT project.

generator-template Generative code template for combining transparent png attributes into 10,000 unique images. Used for the PixelBeasts 10k NFT proje

Yohei Nakajima 9 Aug 24, 2022
A Real-World Benchmark for Reinforcement Learning based Recommender System

RL4RS: A Real-World Benchmark for Reinforcement Learning based Recommender System RL4RS is a real-world deep reinforcement learning recommender system

121 Dec 01, 2022
Metric learning algorithms in Python

metric-learn: Metric Learning in Python metric-learn contains efficient Python implementations of several popular supervised and weakly-supervised met

1.3k Dec 28, 2022
VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations

VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations 3D-aware Image Synthesis via Learning Structural and Textura

GenForce: May Generative Force Be with You 116 Dec 26, 2022
Rethinking Space-Time Networks with Improved Memory Coverage for Efficient Video Object Segmentation

STCN Rethinking Space-Time Networks with Improved Memory Coverage for Efficient Video Object Segmentation Ho Kei Cheng, Yu-Wing Tai, Chi-Keung Tang [a

Rex Cheng 456 Dec 12, 2022
Scripts and misc. stuff related to the PortSwigger Web Academy

PortSwigger Web Academy Notes Mostly scripts to automate the exploits. Going in the order of the recomended learning path - starting with SQLi. Commun

pageinsec 17 Dec 30, 2022