Code for the paper "Regularizing Variational Autoencoder with Diversity and Uncertainty Awareness"

Related tags

Deep LearningDU-VAE
Overview

DU-VAE

This is the pytorch implementation of the paper "Regularizing Variational Autoencoder with Diversity and Uncertainty Awareness"

Acknowledgements

Our code is mainly based on this public code. Very thanks for its authors.

Requirements

  • Python >= 3.6
  • Pytorch >= 1.5.0

Data

Datastes used in this paper can be downloaded in this link, with the specific license if that is not based on MIT License.

Usage

Example script to train DU-VAE on text data:

python text.py --dataset yelp \
 --device cuda:0  \
--gamma 0.5 \
--p_drop 0.2 \
--delta_rate 1 \
--kl_start 0 \
--warm_up 10

Example script to train DU-VAE on image data:

python3.6 image.py --dataset omniglot \
 --device cuda:3 \
--kl_start 0 \
--warm_up 10 \
--gamma 0.5  \
--p_drop 0.1 \
--delta_rate 1 \
--dataset omniglot

Example script to train DU-IAF, a variant of DU-VAE, on text data:

python3.6 text_IAF.py --device cuda:2 \
--dataset yelp \
--gamma 0.6 \
--p_drop 0.3 \
--delta_rate 1 \
--kl_start 0 \
--warm_up 10 \
--flow_depth 2 \
--flow_width 60

Example script to train DU-IAF on image data:

python3.6 image_IAF.py --dataset omniglot\
  --device cuda:3 \
--kl_start 0 \
--warm_up 10 \
--gamma 0.5 \
 --p_drop 0.15\
 --delta_rate 1 \
--flow_depth 2\
--flow_width 60 

Here,

  • --dataset specifies the dataset name, currently it supports synthetic, yahoo, yelp for text.py and omniglot for image.py.
  • --kl_start represents starting KL weight (set to 1.0 to disable KL annealing)
  • --warm_up represents number of annealing epochs (KL weight increases from kl_start to 1.0 linearly in the first warm_up epochs)
  • --gamma represents the parameter $\gamma$ in our Batch-Normalization approach, which should be more than 0 to use our model.
  • --p_drop represents the parameter $1-p$ in our Dropout approach, which denotes the percent of data to be ignored and should be ranged in (0,1).
  • --delta_rate represents the hyper-parameter $\alpha$ to controls the min value of the variance $\delta^2$
  • --flow_depth represents number of MADE layers used to implement DU-IAF.
  • --flow_wdith controls the hideen size in each IAF block, where we set the product between the value and the dimension of $z$ as the hidden size. For example, when we set --flow width 60 with the dimension of $z$ as 32, the hidden size of each IAF block is 1920.

Reference

If you find our methods or code helpful, please kindly cite the paper:

@inproceedings{shen2021regularizing,
  title={Regularizing Variational Autoencoder with Diversity and Uncertainty Awareness},
  author={Shen, Dazhong  and Qin, Chuan and Wang, Chao and Zhu, Hengshu and Chen, Enhong and Xiong, Hui},
  booktitle={Proceedings of the 30th International Joint Conference on Artificial Intelligence (IJCAI-21)},
  year={2021}
}
Owner
Dazhong Shen
Dazhong Shen
Keras community contributions

keras-contrib : Keras community contributions Keras-contrib is deprecated. Use TensorFlow Addons. The future of Keras-contrib: We're migrating to tens

Keras 1.6k Dec 21, 2022
ML course - EPFL Machine Learning Course, Fall 2021

EPFL Machine Learning Course CS-433 Machine Learning Course, Fall 2021 Repository for all lecture notes, labs and projects - resources, code templates

EPFL Machine Learning and Optimization Laboratory 1k Jan 04, 2023
ProMP: Proximal Meta-Policy Search

ProMP: Proximal Meta-Policy Search Implementations corresponding to ProMP (Rothfuss et al., 2018). Overall this repository consists of two branches: m

Jonas Rothfuss 212 Dec 20, 2022
Código de um painel de auto atendimento feito em Python.

Painel de Auto-Atendimento O intuito desse projeto era fazer em Python um programa que simulasse um painel de auto atendimento, no maior estilo Mac Do

Calebe Alves Evangelista 2 Nov 09, 2022
A toolkit for document-level event extraction, containing some SOTA model implementations

❤️ A Toolkit for Document-level Event Extraction with & without Triggers Hi, there 👋 . Thanks for your stay in this repo. This project aims at buildi

Tong Zhu(朱桐) 159 Dec 22, 2022
Simple renderer for use with MuJoCo (>=2.1.2) Python Bindings.

Viewer for MuJoCo in Python Interactive renderer to use with the official Python bindings for MuJoCo. Starting with version 2.1.2, MuJoCo comes with n

Rohan P. Singh 62 Dec 30, 2022
FedMM: Saddle Point Optimization for Federated Adversarial Domain Adaptation

This repository contains the code accompanying the paper " FedMM: Saddle Point Optimization for Federated Adversarial Domain Adaptation" Paper link: R

20 Jun 29, 2022
Official code for paper Exemplar Based 3D Portrait Stylization.

3D-Portrait-Stylization This is the official code for the paper "Exemplar Based 3D Portrait Stylization". You can check the paper on our project websi

60 Dec 07, 2022
An Intelligent Self-driving Truck System For Highway Transportation

Inceptio Intelligent Truck System An Intelligent Self-driving Truck System For Highway Transportation Note The code is still in development. OS requir

InceptioResearch 11 Jul 13, 2022
Recreate CenternetV2 based on MMDET.

Introduction This project is trying to Recreate CenternetV2 based on MMDET, which is proposed in paper Probabilistic two-stage detection. This project

25 Dec 09, 2022
SatelliteSfM - A library for solving the satellite structure from motion problem

Satellite Structure from Motion Maintained by Kai Zhang. Overview This is a libr

Kai Zhang 190 Dec 08, 2022
(CVPR2021) Kaleido-BERT: Vision-Language Pre-training on Fashion Domain

Kaleido-BERT: Vision-Language Pre-training on Fashion Domain Mingchen Zhuge*, Dehong Gao*, Deng-Ping Fan#, Linbo Jin, Ben Chen, Haoming Zhou, Minghui

250 Jan 08, 2023
Prompt-BERT: Prompt makes BERT Better at Sentence Embeddings

Prompt-BERT: Prompt makes BERT Better at Sentence Embeddings Results on STS Tasks Model STS12 STS13 STS14 STS15 STS16 STSb SICK-R Avg. unsup-prompt-be

196 Jan 08, 2023
A distributed deep learning framework that supports flexible parallelization strategies.

FlexFlow FlexFlow is a deep learning framework that accelerates distributed DNN training by automatically searching for efficient parallelization stra

528 Dec 25, 2022
Haze Removal can remove slight to extreme cases of haze affecting an image

Haze Removal can remove slight to extreme cases of haze affecting an image. Its most typical use is for landscape photography where the haze causes low contrast and low saturation, but it can also be

Grace Ugochi Nneji 3 Feb 15, 2022
A selection of State Of The Art research papers (and code) on human locomotion (pose + trajectory) prediction (forecasting)

A selection of State Of The Art research papers (and code) on human trajectory prediction (forecasting). Papers marked with [W] are workshop papers.

Karttikeya Manglam 40 Nov 18, 2022
BasicNeuralNetwork - This project looks over the basic structure of a neural network and how machine learning training algorithms work

BasicNeuralNetwork - This project looks over the basic structure of a neural network and how machine learning training algorithms work. For this project, I used the sigmoid function as an activation

Manas Bommakanti 1 Jan 22, 2022
Unofficial pytorch-lightning implement of Mip-NeRF

mipnerf_pl Unofficial pytorch-lightning implement of Mip-NeRF, Here are some results generated by this repository (pre-trained models are provided bel

Jianxin Huang 159 Dec 23, 2022
Train Scene Graph Generation for Visual Genome and GQA in PyTorch >= 1.2 with improved zero and few-shot generalization.

Scene Graph Generation Object Detections Ground truth Scene Graph Generated Scene Graph In this visualization, woman sitting on rock is a zero-shot tr

Boris Knyazev 93 Dec 28, 2022
Neighborhood Reconstructing Autoencoders

Neighborhood Reconstructing Autoencoders The official repository for Neighborhood Reconstructing Autoencoders (Lee, Kwon, and Park, NeurIPS 2021). T

Yonghyeon Lee 24 Dec 14, 2022